Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán căn bậc hai, căn bậc ba

Nội dung Phương pháp giải các dạng toán căn bậc hai, căn bậc ba Bản PDF - Nội dung bài viết Tài liệu học phương pháp giải các dạng toán căn bậc hai, căn bậc ba Tài liệu học phương pháp giải các dạng toán căn bậc hai, căn bậc ba Tài liệu này bao gồm 54 trang, tóm tắt những kiến thức quan trọng và cung cấp hướng dẫn cách giải các dạng toán căn bậc hai và căn bậc ba, giúp học sinh lớp 9 dễ dàng tham khảo khi học chương trình Toán lớp 9 phần Đại số chương 1. Trong tài liệu, các bài được chia ra làm các phần sau: Bài 1: Giải các dạng toán liên quan đến căn bậc hai. Bao gồm cách tìm căn bậc hai của một số, so sánh các căn bậc hai, giải phương trình và bất phương trình liên quan đến căn bậc hai. Bài 2: Liên quan đến phép nhân và phép khai phương. Hướng dẫn khai phương một tích, nhân các căn bậc hai, rút gọn biểu thức và giải phương trình. Bài 3: Thảo luận về phép chia và phép khai phương. Bao gồm cách khai phương một thương, chia các căn bậc hai, rút gọn biểu thức và giải phương trình. Bài 4: Hướng dẫn sử dụng bảng căn bậc hai và biến đổi đơn giản biểu thức chứa căn thức bậc hai. Bài 5: Rút gọn biểu thức chứa căn thức bậc hai, bao gồm cách rút gọn biểu thức có các phép cộng, trừ, nhân, chia căn thức dưới dạng phân thức đại số. Bài 6: Hướng dẫn tìm căn bậc ba của một số, so sánh các căn bậc ba và giải phương trình liên quan đến căn bậc ba. Với cách trình bày cụ thể và dễ hiểu, tài liệu này sẽ giúp học sinh khái quát kiến thức và tự tin trong việc giải các dạng toán liên quan đến căn bậc hai và căn bậc ba trong chương trình Toán lớp 9.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề phương trình quy về phương trình bậc hai
Tài liệu gồm 27 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề phương trình quy về phương trình bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Phương trình trùng phương: Phương trình trùng phương là phương trình có dạng: 4 2 ax bx c a 0. Cách giải: Đặt ẩn phụ 2 t xt 0 để đưa phương trình về phương trình bậc hai: 2 at bt c a 0. 2. Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức ta làm theo các bước sau: + Bước 1: Tìm điều kiện xác định của ẩn của phương trình. + Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3: Giải phương trình vừa nhận được ở bước 2. + Bước 4: So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. 3. Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có thể thực hiện theo các bước sau: + Bước 1: Phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2: Xét từng nhân tử bằng 0 để tìm nghiệm. B. Bài tập và các dạng toán. I. Phương trình không chứa tham số. + Dạng 1: Giải phương trình trùng phương. + Dạng 2: Phương trình chứa ẩn ở mẫu thức. + Dạng 3: Phương trình đưa về dạng tích. + Dạng 4: Giải bằng phương pháp đặt ẩn phụ. + Dạng 5: Phương trình chứa căn thức. + Dạng 6: Một số dạng khác. II. Phương trình chứa tham số. + Dạng 1: Phương trình bậc ba đưa được về dạng tích 2 x k ax bx c 0. + Dạng 2: Phương trình trùng phương. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề bài toán về đường thẳng và parabol
Tài liệu gồm 08 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề bài toán về đường thẳng và parabol trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. Cho đường thẳng d y mx n và Parabol P y ax a 0. Khi đó số giao điểm của d và P bằng đúng số nghiệm của phương trình hoành độ giao điểm 2 ax mx n. Ta có bảng sau: Số giao điểm của d và (P) Biệt thức ∆ của phương trình hoành độ giao điểm của d và (P) Vị trí tương đối của d và (P). 0 ∆ 0 d không cắt P. 1 ∆ 0 d tiếp xúc với P. 2 ∆ 0 d cắt P tại hai điểm phân biệt. B. Bài tập.
Tài liệu Toán 9 chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Tài liệu gồm 10 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Góc có đỉnh bên trong đường tròn. Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh ở bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn. Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập. Dạng 1 : Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2 : Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Từ đó suy ra điều cần chứng minh.
Tài liệu Toán 9 chủ đề góc nội tiếp
Tài liệu gồm 09 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề góc nội tiếp trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Lý thuyết. 1. Định nghĩa: Góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn gọi là góc nội tiếp. Lưu ý: Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: Trong một đường tròn: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. B. Bài tập. Dạng 1 : Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau. Cách giải: Dùng hệ quả trong phần lý thuyết. Dạng 2 : Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng.