Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết, các dạng toán và bài tập tứ giác

Tài liệu gồm 55 trang, tóm tắt lý thuyết, các dạng toán và bài tập tứ giác, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 1) phần Hình học chương 1. Bài 1. Tứ giác. + Dạng 1. Tính góc của tứ giác. + Dạng 2. Vẽ tứ giác. + Dạng 3. Tính độ dài. Hệ thức giữa các độ dài. Bài 2. Hình thang. + Dạng 1. Tính góc của hình thang. + Dạng 2. Nhận biết hình thang, hình thang vuông. + Dạng 3. Tính toán và chứng minh về độ dài. Bài 3. Hình thang cân. + Dạng 1. Nhận biết hình thang cân. + Dạng 2. Sử dụng tính chất hình thang cân để tính số đo góc, độ dài đường thẳng. Bài 4. Đường trung bình của tam giác, của hình thang. + Dạng 1. Sử dụng đường trung bình của tam giác để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 2. Sử dụng đường trung bình của tam giác để chứng minh hai đường thẳng song song, chứng minh ba điểm thẳng hàng, tính góc. + Dạng 3. Sử dụng đường trung bình của hình thang để tính độ dài và chứng minh các quan hệ về độ dài. + Dạng 4. Sử dụng đường trung bình của hình thang để chứng minh hai đường thẳng song song, chứng minh ba đlểm thẳng hàng, tính góc. Bài 5. Dựng hình bằng thước và compa. Dựng hình thang. + Dạng 1. Dựng tam giác. + Dạng 2. Dựng hình thang. + Dạng 3. Dựng góc có số đo đặc biệt. + Dạng 4. Dựng tứ giác, dựng điểm hay đường thẳng thoả mãn một yêu cầu nào đó. Bài 6. Đối xứng trục. + Dạng 1. Vẽ hình, nhận biết hai hình đối xứng với nhau qua một trục. + Dạng 2. Sử dụng đối xứng trục để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm trục đối xứng của một hình, hình có trục đối xứng. + Dạng 4. Dựng hình, thực hành có sử dụng đối xứng trục. Bài 7. Hình bình hành. + Dạng 1. Nhận biết hình bình hành. + Dạng 2. Sử dụng tính chất của hình bình hành để chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau. + Dạng 3. Sử dụng tính chất đường chéo hình bình hành để chứng minh ba điểm thẳng hàng, chứng minh ba đường thẳng đồng quy. + Dạng 4. Dựng hình bình hành, hoặc dựng hình có liên quan đến hình bình hành. Bài 8. Đối xứng tâm. + Dạng 1. Vẽ hình đối xứng qua một tâm. + Dạng 2. Nhận biết hai điểm đối xứng với nhau qua một tâm. Sử dụng đối xứng tâm để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. + Dạng 3. Tìm tâm đối xứng của một hình, tìm hình có tâm đối xứng. + Dạng 4. Dựng hình có sử dụng đối xứng tâm. Bài 9. Hình chữ nhật. + Dạng 1. Nhận biết hình chữ nhật. + Dạng 2. Sử dụng tính chất hình chữ nhật để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tính chất đối xứng của hình chữ nhật. + Dạng 4. Áp dụng vào tam giác. + Dạng 5. Dựng hình chữ nhật. Bài 10. Đường thẳng song song với một đường thẳng cho trước. + Dạng 1. Đường thẳng song song cách đều. + Dạng 2. Chứng tỏ một điểm chuyển động trên một đường thẳng song song với một đường thẳng cho trước. + Dạng 3. Phát biểu một tập hợp điểm. Bài 11. Hình thoi. + Dạng 1. Nhận biết hình thoi. + Dạng 2. Sử dụng tính chất hình thoi để tính toán, chứng minh các đoạn thẳng bằng nhau, các góc bằng nhau, các đường thẳng vuông góc. + Dạng 3. Tính chất đối xứng của hình thoi. + Dạng 4. Dựng hình thoi. Bài 12. Hình vuông. + Dạng 1. Nhận biết hình vuông. + Dạng 2. Sử dụng tính chất hình vuông để chứng minh các quan hệ bằng nhau, song song, thẳng hàng, vuông góc. + Dạng 3. Tìm điều kiện để một hình trở thành hình vuông. + Dạng 4. Dựng hình vuông, cắt hình vuông. Ôn tập chương I.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề các bài toán về phân thức đại số bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề các bài toán về phân thức đại số bồi dưỡng học sinh giỏi Toán 8. Chủ đề 1. CHỨNG MINH MỘT BIỂU THỨC LÀ SỐ TỐI GIẢN 2. Chủ đề 2. TÍNH GIÁ TRỊ CỦA PHÂN THỨC ĐẠI SỐ 3. + Dạng 1. Tính giá trị biểu thức thỏa mãn điều kiện cho trước của biến 3. + Dạng 2. Tính giá trị biểu thức số bằng cách biến đổi từ công thức tổng quát 17. Chủ đề 3. RÚT GỌN BIỂU THỨC 19. + Dạng 1. Rút gọn biểu thức bằng cách sử dụng tính chất cơ bản của phân thức 19. + Dạng 2. Rút gọn biểu thức thỏa mãn điều kiện cho trước của biến 22. + Dạng 3. Rút gọn các biểu thức có tính quy luật 26. Chủ đề 4. CHỨNG MINH ĐẲNG THỨC CHỨA PHÂN THỨC ĐẠI SỐ 29. + Dạng 1. Biến đổi vế này thành vế kia 29. + Dạng 2. Biến đổi cả hai vế cùng bằng biểu thức thứ ba 31. + Dạng 3. Từ điều kiện tạo ra thành phần một vế 33. + Dạng 4. Phương pháp biến đổi tương đương 40. + Dạng 5. Phương pháp đổi biến số 41. + Dạng 6. Phân tích đi lên từ kết luận 43. + Dạng 7. Phương pháp tách hạng tử 44. Chủ đề 5. BÀI TOÁN TỔNG HỢP 45.
Phát triển tư duy sáng tạo giải toán Đại số 8
Tài liệu gồm 352 trang, được biên soạn bởi tác giả Bùi Văn Tuyên (chủ biên), Nguyễn Đức Trường, Nguyễn Tam Sơn, tuyển tập các chuyên đề Đại số 8 giúp học sinh phát triển tư duy sáng tạo giải toán Đại số 8. CHƯƠNG I . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. Chuyên đề 1. Phép nhân các đa thức. Chuyên đề 2. Các hằng đẳng thức đáng nhớ. Chuyên đề 3. Phân tích đa thức thành nhân tử. Chuyên đề 4. Hằng đẳng thức mở rộng. Chuyên đề 5. Phân tích đa thức thành nhân tử bằng một số phương pháp khác. Chuyên đề 6. Số chính phương. Chuyên đề 7. Chia đa thức cho đa thức. Chuyên đề 8. Phép chia hết trên tập hợp số nguyên. CHƯƠNG II . PHÂN THỨC ĐẠI SỐ. Chuyên đề 9. Phân thức đại số. Tính chất phân thức đại số. Chuyên đề 10. Rút gọn phân thức. Chuyên đề 11. Phép cộng và phép trừ các phân thức đại số. Chuyên đề 12. Phép nhân và phép chia các phân thức đại số. Chuyên đề 13. Biến đổi các phân thức hữu tỉ. Chuyên đề 14. Chứng minh đẳng thức đại số. CHƯƠNG III . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Chuyên đề 15. Phương trình. Phương trình bậc nhất một ẩn. Chuyên đề 16. Phương trình đưa được về dạng ax + b = 0 (hay ax = -b). Chuyên đề 17. Phương trình tích. Chuyên đề 18. Phương trình chứa ẩn ở mẫu thức. Chuyên đề 19. Giải toán bằng cách lập phương trình. Chuyên đề 20. Phương trình nghiệm nguyên. CHƯƠNG IV . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Chuyên đề 21. Bất đẳng thức. Chuyên đề 22. Bất phương trình bậc nhất một ẩn. Chuyên đề 23. Bất phương trình dạng tích, thương. Chuyên đề 24. Phương trình. Bất phương trình chứa dấu giá trị tuyệt đối. Chuyên đề 25. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức. Chuyên đề 26. Đồng dư thức.
Phát triển tư duy sáng tạo giải toán Hình học 8
Tài liệu gồm 315 trang, được biên soạn bởi tác giả Bùi Văn Tuyên (chủ biên) và tác giả Nguyễn Đức Trường, tuyển tập các chuyên đề Hình học 8 giúp học sinh phát triển tư duy sáng tạo giải toán Hình học 8. Mục lục tài liệu phát triển tư duy sáng tạo giải toán Hình học 8: CHƯƠNG I . TỨ GIÁC. + Chuyên đề 1. Tứ giác. + Chuyên đề 2. Hình thang. Hình thang cân. Dựng hình thang. + Chuyên đề 3. Đường trung bình của tam giác, của hình thang. + Chuyên đề 4. Hình bình hành. + Chuyên đề 5. Hình chữ nhật. + Chuyên đề 6. Hình thoi và hình vuông. + Chuyên đề 7. Đối xứng trục – đối xứng tâm. + Chuyên đề 8. Vẽ hình phụ để giải toán. + Chuyên đề 9. Toán quỹ tích. CHƯƠNG II . ĐA GIÁC – DIỆN TÍCH ĐA GIÁC. + Chuyên đề 10. Đa giác – đa giác đều. + Chuyên đề 11. Diện tích đa giác. + Chuyên đề 12. Phương pháp diện tích. CHƯƠNG III . TAM GIÁC ĐỒNG DẠNG. + Chuyên đề 13. Định lý Ta-lét trong tam giác. + Chuyên đề 14. Tính chất đường phân giác của tam giác. + Chuyên đề 15. Các trường hợp đồng dạng của tam giác. + Chuyên đề 16. Các trường hợp đồng dạng của tam giác vuông. + Chuyên đề 17. Định lý Menelaus, định lý Ce–va, định lý Van–oben. CHƯƠNG IV . HÌNH LĂNG TRỤ ĐỨNG – HÌNH CHÓP ĐỀU. + Chuyên đề 18. Hình hộp chữ nhật. + Chuyên đề 19. Hình lăng trụ đứng. + Chuyên đề 20. Hình chóp đều.
Lý thuyết, các dạng toán và bài tập hình lăng trụ đứng, hình chóp đều
Tài liệu gồm 45 trang, tóm tắt lý thuyết, các dạng toán và bài tập hình lăng trụ đứng, hình chóp đều, giúp học sinh lớp 8 tham khảo khi học chương trình Toán 8 (tập 2) phần Hình học chương 4. A. HÌNH LĂNG TRỤ ĐỨNG. Bài 1. Hình hộp chữ nhật. + Dạng 1. Kể tên các đỉnh, các cạnh, các mặt của hình hộp chữ nhật. + Dạng 2. Nhận biết một điểm thuộc một đường thẳng, thuộc một mặt phẳng. + Dạng 3. Vẽ hình biểu diễn của hình hộp chữ nhật. Gấp hình để được hình hộp chữ nhật. Bài 2. Hình hộp chữ nhật (tiếp). + Dạng 1. Vị trí của hai đường thẳng trong không gian. + Dạng 2. Nhận biết đường thẳng song song với mặt phẳng, mặt phẳng song song với mặt phẳng. + Dạng 3. Tìm giao tuyến của hai mặt phẳng. + Dạng 4. Tính diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật. Bài 3. Thể tích của hình hộp chữ nhật. + Dạng 1. Tính thể tích của hình hộp chữ nhật, tính một yếu tố của hình hộp chữ nhật. + Dạng 2. Đường chéo của hình hộp chữ nhật. + Dạng 3. Nhận biết đường thẳng vuông góc với mặt phẳng, mặt phẳng vuông góc với mặt phẳng. + Dạng 4. Tính độ dài ngắn nhất trên các mặt phẳng của hình hộp chữ nhật, đếm số hình lập phương nhỏ được sơn ở các mặt hình lập phương lớn. Bài 4. Hình lăng trụ đứng. + Dạng 1. Tìm số cạnh, số mặt, số đỉnh của hình lăng trụ đứng. + Dạng 2. Vẽ hình lăng trụ đứng. Gấp hình để tạo thành hình lăng trụ đứng. + Dạng 3. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. Bài 5. Diện tích xung quan củahình lăng trụ đứng. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần, tính một yếu tố của lăng trụ đứng. + Dạng 2. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. Bài 6. Thể tích của hình lăng trụ đứng. + Dạng 1. Tính thể tích, tính các yếu tố của hình lăng trụ đứng. + Dạng 2. Tìm các yếu tố song song, vuông góc trong hình lăng trụ đứng. B. HÌNH CHÓP ĐỀU. Bài 7. Hình chóp đều và hình chóp cụt đều. + Dạng 1. Tính số mặt, số đỉnh, số cạnh của hình chóp. + Dạng 2. Nhận dạng hình chóp đều. Tính chất hình chóp đều. + Dạng 3. Vẽ hình chóp đều. Gấp hình để tạo thành hình chóp đều. + Dạng 4. Chứng minh các quan hệ bằng nhau, song song, vuông góc trong hình chóp. Bài 8. Diện tích xung quanh của hình chóp đều. + Dạng 1. Tính diện tích xung quanh, diện tích toàn phần, tính một yếu tố của hình chóp đều. + Dạng 2. Tính diện tích xung quanh của hình chóp cụt đều. Bài 9. Thể tích của hình chóp đều. + Dạng 1. Tính thể tích, tính một yếu tố của hình chóp tứ giác đều. + Dạng 2. Tính thể tích, tính một yếu tố của hình chóp tam giác đều, lục giác đều. ÔN TẬP CHƯƠNG IV. a. Bài tập ôn trong SGK. B. Bài tập ôn bổ sung.