Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

53 đề ôn tập tuyển sinh lớp 10 môn Toán năm 2024 - 2025 sở GDĐT TP HCM

Tài liệu gồm 316 trang, được biên tập bởi quý thầy, cô giáo nhóm LaTeX Toán THPT 2018, tuyển tập 53 đề ôn tập tuyển sinh vào lớp 10 THPT môn Toán năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. MỤC LỤC : Đề số 1. Đề TKTS10 Năm học 2024 − 2025 Trường THCS Á Châu 4. Đề số 2. Đề TKTS10 Năm học 2023 − 2024 Trường THCS Bình Quới 8. Đề số 3. Đề tham khảo tuyển sinh Năm học 2024 − 2025 Trường THCS Thanh Đa – Bình Thạnh 14. Đề số 4. Đề tuyển sinh lớp 10 Năm học 2024−2025 Trường THCS Bình Lợi Trung 19. Đề số 5. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Rạng Đông 24. Đề số 6. Đề tham khảo tuyển sinh vào lớp 10 Năm học 2023 − 2024 Trường THCS Phú Mỹ 30. Đề số 7. Đề tham khảo tuyển sinh 10 Năm học 2023 − 2024 Phòng GD&ĐT Quận 7 36. Đề số 8. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2024 − 2025 PHÒNG GD&ĐT QUẬN 7 41. Đề số 9. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS THANH ĐA 47. Đề số 10. Đề Tham Khảo Tuyển Sinh 10 Năm học 2023−2024 Trường THCS Yên Thế – Quận Bình Thạnh 52. Đề số 11. Đề TKTS10-2024-2025 Năm học 2023 − 2024 THCS Trương Công Định 57. Đề số 12. Đề kiểm tra giữa kì 2 Năm học 2023 − 2024 Trường THCS Lam Sơn – Bình Thạnh 63. Đề số 13. Đề Tham khảo tuyển sinh 10 Năm học 2023−2024 Trường THCS Hà Huy Tập 70. Đề số 14. Đề tuyển sinh 10 Năm học 2023−2024 Trường THCS Đống Đa 76. Đề số 15. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Quận 7 – Đề 3 82. Đề số 16. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Nguyễn Văn Bé 89. Đề số 17. ĐỀ THAM KHẢO THI TUYỂN SINH LỚP 10 Năm học 2024 − 2025 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO QUẬN 8 95. Đề số 18. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Cửu Long 102. Đề số 19. Đề đề nghị Tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Chu Văn An 109. Đề số 20. Đề thi tuyển sinh lớp 10 THPT Năm học 2023−2024 Trường THCS Hậu Giang 115. Đề số 21. Đề tham khảo TS 10 Năm học 2023 − 2024 Trường THCS Lê Anh Xuân 121. Đề số 22. Đề đề nghị Tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Lê Quý Đôn Quận 11 128. Đề số 23. Đề thi tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Lữ Gia 135. Đề số 24. Đề Tham Khảo Tuyển Sinh 10 Năm học 2023−2024 Trường THCS Nguyễn Minh Hoàng 141. Đề số 25. Đề tham khảo tuyển sinh 10 Năm học 2024 − 2025 Trường THCS Nguyễn Văn Phú 147. Đề số 26. Đề Tham Khảo TS10 Năm học 2024 − 2025 Trường THCS Việt Mỹ Q11 152. Đề số 27. Đề Tham khảo tuyển sinh vào 10 Năm học 2023 − 2024 Trường THCS Phước Hiệp – Củ Chi 156. Đề số 28. ĐỀ THAM KHẢO KỲ THI TUYỂN SINH 10 Năm học 2023−2024 Trường THCS BÌNH HÒA 163. Đề số 29. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 PHÒNG GIÁO DỤC VÀ ĐÀO TẠO QUẬN 8 168. Đề số 30. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 TRƯỜNG TH–THCS HỒNG NGỌC 175. Đề số 31. ĐỀ ĐỀ NGHỊ TS10-HCM-2024 Năm học 2023−2024 Trường THCS Đồng Khởi 180. Đề số 32. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Lê Anh Xuân 185. Đề số 33. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Hùng Vương 191. Đề số 34. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS TÔN THẤT TÙNG 196. Đề số 35. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Lê Lợi 201. Đề số 36. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Tân Thới Hòa 207. Đề số 37. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Hậu Giang 212. Đề số 38. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Nguyễn Huệ 219. Đề số 39. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Nguyễn Trãi 226. Đề số 40. ĐỀ THAM KHẢO TS10-HCM-2024 Năm học 2024 − 2025 Trường THCS Lê Thánh Tông 230. Đề số 41. KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG Năm học 2024 − 2025 Trường THCS Âu Lạc 236. Đề số 42. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 Trường THCS LÝ THƯỜNG KIỆT 243. Đề số 43. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2024 − 2025 Trường THCS Nguyễn Gia Thiều 250. Đề số 44. Đề thi thử vào lớp 10 Năm học 2023 − 2024 Trường THCS Ngô Quyền 256. Đề số 45. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 Trường THCS Quận 10 262. Đề số 46. Đề Tham khảo Tuyển sinh 10 Năm học 2023−2024 Trường THCS Phạm Ngọc Thạch 275. Đề số 47. Đề tham khảo tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Quang Trung 281. Đề số 48. ĐỀ THAM KHẢO TUYỂN SINH 10 Năm học 2023 − 2024 Trường THCS QUỐC TẾ Á CHÂU 286. Đề số 49. Đề Tham khảo TS10 Năm học 2023 − 2024 Trường THCS Trường Chinh 291. Đề số 50. Đề kiểm tra tuyển sinh 10 Năm học 2023 − 2024 Trường THCS Trần Văn Đang – Quận Tân Bình 296. Đề số 51. KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG Năm học 2024 − 2025 Trường THCS Trần Văn Quang 301. Đề số 52. Đề thi thử tuyển sinh 10 TPHCM Năm học 2023 − 2024 Trường THCS Lam Sơn – Q. Bình Thạnh 307. Đề số 53. Đề thi thử tuyển sinh 10 TPHCM Năm học 2023 − 2024 Trường THCS Điện Biên – Q. Bình Thạnh 312.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh năm 2019 2020 sở GD ĐT Bắc Ninh
Nội dung Đề Toán tuyển sinh năm 2019 2020 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 sở GD ĐT Bắc Ninh Đề Toán tuyển sinh năm 2019-2020 sở GD ĐT Bắc Ninh Sytu xin gửi đến quý thầy cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019-2020 sở GD&ĐT Bắc Ninh. Đây là kỳ thi nhằm tuyển chọn các em học sinh có học lực tốt để vào học tại các trường THPT trên địa bàn tỉnh Bắc Ninh. Đề thi được biên soạn theo dạng kết hợp trắc nghiệm và tự luận, với 6 câu trắc nghiệm và 4 câu tự luận. Thời gian làm bài là 120 phút. Trích đề Toán tuyển sinh lớp 10 năm 2019-2020 sở GD&ĐT Bắc Ninh: Cho đường tròn (O) và hai điểm A, B nằm trên (O) sao cho góc AOB = 90°. Điểm C nằm trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Hãy chứng minh rằng: a) Tứ giác CIHK nội tiếp một đường tròn. b) MN là đường kính của đường tròn (O). c) OC song song với DH. Cho phương trình \(x^2 - 2mx - 2m - 1 = 0\) với m là tham số. Tìm m sao cho phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn √(x1 + x2) + √(3 + x1x2) = 2m + 1. Cho hai số thực không âm a, b thỏa mãn a^2 + b^2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(M = \frac{a^3 + b^3 + 4}{ab + 1}\). Cảm ơn quý thầy cô đã quan tâm và hy vọng các em học sinh sẽ làm bài thật tốt trong kỳ thi tuyển sinh sắp tới.
Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương
Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn các học sinh có học lực tốt để học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương bao gồm 5 bài toán dạng tự luận. Đề thi chỉ có 1 trang, học sinh được 120 phút để làm bài thi và đề thi có lời giải chi tiết. Một số câu hỏi trong đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương: 1. Cho hai đường thẳng (d1): y = 2x - 5 và (d2): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. 2. Một xưởng may cần may xong 360 bộ quần áo trong thời gian quy định. Tuy nhiên, xưởng may hơn 4 bộ quần áo mỗi ngày so với kế hoạch, dẫn đến hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng cần may bao nhiêu bộ quần áo? 3. Cho phương trình: x^2 - (2m + 1)x - 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m và tìm các giá trị của m sao cho |x1| - |x2| = 5 và x1 < x2.
Đề tuyển sinh môn Toán năm 2019 2020 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán năm 2019 2020 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2019-2020 sở GD&ĐT Tiền Giang Đề tuyển sinh môn Toán năm 2019-2020 sở GD&ĐT Tiền Giang Ngày 05 tháng 06 năm 2019, Sở Giáo dục và Đào tạo tỉnh Tiền Giang đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán nhằm lựa chọn học sinh có học lực tốt, chuẩn bị cho năm học mới 2019-2020. Đề tuyển sinh lớp 10 môn Toán năm 2019-2020 của sở GD&ĐT Tiền Giang bao gồm 05 bài toán được biên soạn theo dạng tự luận, thời gian làm bài thi là 120 phút, và có lời giải chi tiết. Một số bài toán trong đề tuyển sinh: Hai người đi xe đạp từ huyện A đến huyện B trên quãng đường dài 24 km, khởi hành cùng một lúc. Vận tốc xe của người thứ nhất hơn vận tốc xe của người thứ hai là 3 km/h nên người thứ nhất đến huyện B trước người thứ hai là 24 phút. Tính vận tốc của mỗi người. Cho hình nón có đường sinh bằng 17cm và diện tích xung quanh bằng 136pi cm2. Tính bán kính đáy và thể tích của hình nón. Cho parabol (P): y = x^2, các đường thẳng (d1): y = -x + 2 và (d2): y = x + m - 3. 1. Vẽ đồ thị của (P) và (d1) trên cùng một hệ trục tọa độ. 2. Bằng phép tính, tìm tọa độ giao điểm của (P) và (d1). 3. Tìm giá trị của tham số m, biết đường thẳng (d2) tiếp xúc với parabol (P). Đề tuyển sinh môn Toán năm 2019-2020 của sở GD&ĐT Tiền Giang là cơ hội để học sinh thể hiện kiến thức và kỹ năng Toán của mình, và cũng là bước quan trọng trong hành trình học tập và phát triển cá nhân của họ. Chúc các thí sinh thi tốt!
Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Nam Định
Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Nam Định Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Nam Định Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Nam Định Để tuyển chọn học sinh vào học tại các trường Trung học Phổ thông tại Nam Định, sở Giáo dục và Đào tạo tỉnh đã tổ chức kỳ thi Toán tuyển sinh lớp 10 THPT cho năm học 2019-2020. Đề thi được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, với 8 câu trắc nghiệm và 5 câu tự luận. Thời gian làm bài là 120 phút, đề thi có đáp án và lời giải chi tiết. Ví dụ về câu hỏi trong đề tuyển sinh: Chứng minh tứ giác ABOC là tứ giác nội tiếp và ∆CEF đồng dạng ∆BEC. Chứng minh BF.CK = BK.CF. Chứng minh AE là tiếp tuyến của đường tròn ngoại tiếp ∆ABF. Tìm tất cả các giá trị của m để hàm số y = (1 – m)x + m + 1 đồng biến trên R. Xác định giá trị nhỏ nhất của biểu thức P = 1/2.(x + y + z)^2 + 4(x^2 + y^2 + z^2 – xy – yz – zx). Đề thi tuyển sinh môn Toán là cơ hội để học sinh thể hiện năng lực và kiến thức của mình, từ đó có cơ hội tiếp tục học tập tại các trường Trung học Phổ thông tại Nam Định.