Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2022 2023 cụm trường THCS quận Đống Đa Hà Nội

Nội dung Đề thi thử Toán vào 10 năm 2022 2023 cụm trường THCS quận Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2022-2023 cụm trường THCS quận Đống Đa Hà Nội Đề thi thử Toán vào 10 năm 2022-2023 cụm trường THCS quận Đống Đa Hà Nội Xin chào quý thầy cô và các em học sinh! Sytu hân hạnh giới thiệu đến quý vị đề thi thử môn Toán tuyển sinh vào lớp 10 năm học 2022-2023 của cụm các trường THCS quận Đống Đa, thành phố Hà Nội, bao gồm THCS Nguyễn Trường Tộ, THCS Thái Thịnh, THCS Láng Thượng, THCS Láng Hạ. Kỳ thi sẽ diễn ra vào ngày 11 tháng 05 năm 2022, với đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022-2023 cụm trường THCS quận Đống Đa Hà Nội: Bài 1: Khôi đi xe đạp từ nhà đến trường trên quãng đường dài 4 km. Khi đi từ trường về nhà trên con đường đó, Khôi đạp xe với vận tốc trung bình lớn hơn vận tốc trung bình lúc đi là 2 km/h. Tổng thời gian đạp xe cả đi và về của Khôi là 44 phút. Hãy tính vận tốc đạp xe trung bình của Khôi lúc đi từ nhà đến trường. Bài 2: Một khúc gỗ hình trụ có bán kính đáy 15 cm và diện tích xung quanh của khúc gỗ là 2400π cm2. Hãy tính chiều cao của hình trụ. Bài 3: Từ điểm M nằm ngoài đường tròn O kẻ hai tiếp tuyến MA, MB với đường tròn O (AB là hai tiếp điểm). Một đường thẳng d thay đổi đi qua M cắt đường tròn O tại hai điểm N, P sao cho MN = MP. Gọi K là trung điểm của NP. Hãy thực hiện các yêu cầu sau: Chứng minh năm điểm AMBOK cùng thuộc một đường tròn. Chứng minh KM là tia phân giác của góc AKB. Tia BK cắt đường tròn O tại điểm thứ hai là Q. Xác định vị trí của đường thẳng d để diện tích tam giác MPQ đạt giá trị lớn nhất. Hy vọng đề thi sẽ giúp các em học sinh ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 - 2024
Tài liệu gồm 82 trang, được biên soạn bởi thầy giáo Lê Bá Bảo, tuyển tập 15 đề ôn thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024; các đề thi hình thức 100% tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết. Trích dẫn Bộ đề ôn thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 : + Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bả đen, nóc nhà Đông Nam Bộ bằng cáp treo khứ hồi (gồm lượt lên và lượt xuống). Nhưng khi tới nơi có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên còn lúc xuống sẽ đi cáp treo trải nghiệm nên 5 bạn mua vé lượt xuống, do đó đoàn đã chi ra 9450000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé 1 lượt rẻ hơn vé khứ hồi là 110000 đồng. + Cho Cho tam giác ABC vuông tại A ngoại tiếp đường tròn O. Gọi D E F lần lượt là các tiếp điểm của O với các cạnh AB AC và BC. Đường thẳng BO cắt đường thẳng EF tại I. Tính BIF. + Cho hình chữ nhật ABCD. Gọi M N lần lượt là trung điểm cảu các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK.
Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; kỳ thi được diễn ra vào thứ Ba ngày 09 tháng 05 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào 10 lần 2 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y ax b (a b là tham số) tìm a b để d có hệ số góc bằng 3 và cắt đường thẳng ∆ y x 2 3 tại điểm có tung độ bằng 5. + Tìm tất các giá trị của tham số m để phương trình 2 2 x xm m 2 2 10 có hai nghiệm phân biệt 1 x 2 x thỏa mãn điều kiện 2 2 1 2 12 2x x 8 0. + Cho tam giác ABC có góc BAC nhọn đường cao AH H BC nội tiếp trong đường tròn O bán kính R gọi I và K lần lượt là hình chiếu của A lên các tiếp tuyến của O tại B và C 1. Chứng minh tứ giác AIBH và tứ giác AHCK nội tiếp 2. Cho 0 BAC 35. Tính góc IAK. 3. Lấy điểm M trên tia OB sao cho OM R 2. Tìm vị trí điểm N trên O sao cho 2NI NM đạt giá trị nhỏ nhất.
Đề khảo sát Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Trong hệ trục toạ độ Oxy, cho hai đường thẳng 2 1 (d) y (m 1) x 2m (m là tham số) và 2 (d) y 3x 4. Tìm các giá trị của tham số m để các đường thẳng 1 (d) và 2 (d) song song với nhau. + Cho phương trình: 2 2 x 2 m 2 x m 4m 0 1 (với x là ẩn số). 1) Giải phương trình (1) khi m 1. 2) Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn điều kiện: 2 1 1 2 3 3 x x. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AFHE nội tiếp. 2) Tia AD cắt đường tròn (O) ở K (K ≠ A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I (I ≠ A). Chứng minh: MC2 = MI.MA và tam giác CMD cân. 3) MD cắt BI tại N. Chứng minh ba điểm C, N, K thẳng hàng.
Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình y mx m 1 (m là tham số). Tìm giá trị của m để đường thẳng d đi qua điểm M 1 3. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O AB AC các đường cao BE CF. Gọi K là giao điểm của đường thẳng EF và BC. Đường thẳng AK cắt đường tròn O tại M (M khác A). 1. Chứng minh BFEC là tứ giác nội tiếp. 2. Chứng minh MAF MEF. 3. Chứng minh BM AC AM BC CM AB. + Cho ba số thực dương abc thay đổi thỏa mãn điều kiện 3 a b c abc. Tìm giá trị nhỏ nhất của biểu thức 5 3 3 2 a b c S a b c a.