Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh

Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD ĐT Bắc Ninh Bản PDF Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2018 – 2019, đây là kỳ thi nhằm phát hiện và tuyển chọn những em học sinh lớp 12 giỏi môn Toán đang học tập tại các trường THPT trên địa bàn tỉnh Bắc Ninh, các em được chọn sẽ là những tấm gương tiêu biểu trong học tập cho học sinh toàn tỉnh. Đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh có mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, học sinh làm bài trong 90 phút. [ads] Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + . Mệnh đề nào dưới đây SAI? A. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. B. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. + Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(6;0;0), (0;6;0), P(0;0;6). Hai mặt câu có phương trình (S1): x^2 + y^2 + z^2 – 2x – 2y + 1 = 0 và (S2): x^2 + y^2 + z^2 – 8x + 2y + 2z + 1 = 0 cắt nhau theo đường tròn (C). Hỏi có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa (C) và tiếp xúc với ba đường thẳng MN, NP, PM? + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. Gọi S là tập các giá trị của tham số m để đường thẳng d cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho tam giác OAB cân. Số tập con của tập S là?

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2019 2020 sở GD ĐT Quảng Trị
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2019 2020 sở GD ĐT Quảng Trị Bản PDF Ngày 02 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 12 THPT môn Toán năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Quảng Trị gồm 05 bài toán, thời gian làm bài 180 phút, đề thi gồm có 01 trang. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Quảng Trị : + Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ, ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi với góc ABC = 60 độ, BC = a. Biết tam giác SAB đều, tam giác SCD vuông tại C và nằm trong mặt phẳng hợp với mặt phẳng đáy một góc 60 độ. Tính thể tích khối chóp S.ABCD và khoảng cách từ B đến mặt phẳng (SAD) theo a. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE và CF đồng quy tại H. Gọi G là giao điểm BH và DF, L là giao điểm của BC và EF, O là tâm đường tròn ngoại tiếp tam giác BCH, K là trung điểm của BC. Chứng minh H là trực tâm tam giác AKL và LG vuông góc AO.
Đề thi chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hà Nội
Nội dung Đề thi chọn HSG thành phố lớp 12 môn Toán năm 2019 2020 sở GD ĐT Hà Nội Bản PDF Nhằm tuyển chọn các em học sinh giỏi Toán lớp 12 THPT tham dự kỳ thi học sinh giỏi Toán THPT cấp Quốc gia, ngày 03 tháng 10 năm 2019, sở Giáo dục và Đào tạo Hà Nội tổ chức kỳ thi chọn học sinh giỏi thành phố môn Toán lớp 12 năm học 2019 – 2020. Đề thi chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG thành phố Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Hà Nội : + Trong mặt phẳng tọa độ Oxy cho hình vuông ABCD tâm I với M, N(1;-1) lần lượt là trung điểm của các đoạn thẳng IA, CD. Biết điểm B có hoành độ dương và đường thẳng MB có phương trình x – 3y + 6 = 0, tìm tọa độ điểm C. [ads] + Cho hình chóp S.ABC có CA = CB = √2, AB = 2, tam giác SAB là tam giác đều, mp (SAB) vuông góc với mp (ABC). Gọi D là chân đường phân giác trong hạ từ đỉnh C của tam giác SBC. a) Tính thể tích khối chóp D.ABC. b) Gọi M là điểm sao cho các góc tạo bởi các mặt phẳng (MAB), (MBC), (MCA) với mặt phẳng (ABC) là bằng nhau. Tìm giá trị nhỏ nhất của |MA + MB + 4MS – 4MC|. + Xét các số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị lớn nhất của: P = a^3 + b^3 + c^3 – 3/a – 3/b – 3/c.
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Thừa Thiên Huế
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Thừa Thiên Huế Bản PDF Thứ Tư ngày 02 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh khối 12 năm học 2019 – 2020 môn Toán Phổ Thông, nhằm chọn ra những em học sinh xuất sắc, bổ sung vào đội tuyển học sinh giỏi Toán của tỉnh nhà, tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm 2020. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế gồm có 06 bài toán tự luận, đề thi gồm có 01 trang, thời gian học sinh hoàn thành bài thi là 180 phút. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên gồm ba chữ số đôi một khác nhau được chọn từ các chữ số 1; 2; 3; 4; 5; 6. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn có chữ số hàng đơn vị gấp đôi chữ số hàng trăm. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm E(3;4), đường thẳng d: x + y −1 = 0 và đường tròn (C): x^2 + y^2 + 4x − 2y − 4 = 0. Gọi M (m;1−m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB đến đường tròn (C) với A, B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. a) Viết phương trình đường thẳng AB theo m. b) Tìm tọa độ điểm M sao cho đường tròn (E) có chu vi lớn nhất. + Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a. Góc hợp giữa cạnh bên với mặt đáy bằng α. a) Tính thể tích khối chóp S.ABCD theo a và α. b) Giả sử a không đổi, α thay đổi. Xác định α để thể tích khối chóp S.ABCD đạt giá trị lớn nhất.
Toàn cảnh đề thi HSG môn Toán các tỉnh thành năm học 2018 2019
Nội dung Toàn cảnh đề thi HSG môn Toán các tỉnh thành năm học 2018 2019 Bản PDF Tài liệu gồm 623 trang được tổng hợp bởi thầy Vũ Ngọc Thành, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi học sinh giỏi môn Toán các tỉnh thành trong năm học 2018 – 2019, giúp giáo viên và học sinh có cái nhìn tổng quan về kỳ thi HSG Toán cấp tỉnh. Khái quát nội dung tài liệu toàn cảnh đề thi HSG môn Toán các tỉnh thành năm học 2018 – 2019: Chuyên đề 1 và chuyên đề 2: Parabol và bài toán quy hoạch. Chuyên đề 3: Phương trình. Chuyên đề 4: Bất hương trình. Chuyên đề 5: Hệ phương trình. Chuyên đề 6: Bất đẳng thức. Chuyên đề 7: Giá trị lớn nhất giá trị nhỏ nhất. Chuyên đề 8: Lượng giác. Chuyên đề 9: Bài toán đếm. Chuyên đề 10: Xác suất. [ads] Chuyên đề 11: Nhị thức Newton. Chuyên đề 12: Dãy số, giới hạn. Chuyên đề 13: Hàm số liên tục & đạo hàm. Chuyên đề 14: Khảo sát hàm số và các bài toán liên quan. Chuyên đề 15: Mũ & Logarit. Chuyên đề 16: Nguyên hàm – tích phân và ứng dụng của tích phân. Chuyên đề 17: Số phức. Chuyên đề 18: Véc tơ và hình học phẳng. Chuyên đề 19: Tọa độ trong mặt phẳng. Chuyên đề 20: Hình học không gian thuần túy. Chuyên đề 21: Nón – trụ – cầu. Chuyên đề 22: Tọa độ trong không gian. Chuyên đề 23: Số học.