Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Kỳ Anh Hà Tĩnh

Nội dung Đề thi thử Toán vào năm 2023 2024 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF Sytu trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 - 2024 do Phòng Giáo dục và Đào tạo huyện Kỳ Anh, tỉnh Hà Tĩnh tổ chức. Kỳ thi sẽ diễn ra vào ngày 19 tháng 05 năm 2023, đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.

Một số câu hỏi trong đề thi như sau:
1. Cho phương trình \(2x^2 - mx + m^2 - 30 = 0\) (trong đó m là tham số). Tìm giá trị của m để phương trình có 2 nghiệm thỏa mãn điều kiện: \(12x + 1 = 2\).
2. Trong tam giác ABC có góc B và góc C đều nhọn. Biết AC = 8cm và \(\frac{\sin \angle ACB}{\sin \angle ABC} = \frac{2}{3}\). Hãy tính độ dài các đoạn thẳng AH và AB, sau đó tính diện tích tam giác ABC.
3. Trường Giang Đồng tổ chức chuyến thăm công ty TNHH Gang thép Hưng Nghiệp Formosa Hà Tĩnh. Ban đầu có 120 người đăng ký tham gia, sau đó có thêm 66 học sinh đăng ký nên trường phải thuê thêm 2 xe ô tô để chở đoàn sao cho số người trên mỗi xe bằng nhau. Hỏi ban đầu trường dự định thuê bao nhiêu xe?

Nội dung trên là chỉ một phần của đề thi thử Toán tuyển sinh vào lớp 10 năm 2023 - 2024 của Phòng GD&ĐT Kỳ Anh - Hà Tĩnh. Qua đó, các em học sinh sẽ được rèn luyện, nâng cao kiến thức và kỹ năng giải bài toán một cách hiệu quả. Đề thi cũng giúp phản ánh khả năng làm bài, chuẩn bị tốt cho kỳ thi chính thức. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hoà Bình
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Hoà Bình Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD ĐT Hoà Bình Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD ĐT Hoà Bình Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 - 2023 do Sở Giáo dục và Đào tạo tỉnh Hoà Bình tổ chức. Kỳ thi sẽ diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Hoà Bình: 1. Bác Bình trồng cam trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 4m, chu vi của mảnh vườn là 40m. Biết rằng cứ 3m2 bác Bình trồng được 1 cây cam, hỏi bác Bình trồng được bao nhiêu cây cam trên mảnh vườn đó? 2. Cho tam giác ABC vuông tại A có AB = 5 cm và BC = 13 cm. Hãy tính cạnh AC và đường cao AH. 3. Cho đường tròn tâm O và điểm A nằm ngoài đường tròn, từ A kẻ các tiếp tuyến AM, AN với đường tròn. Lấy điểm K thuộc cung nhỏ MN, kẻ tiếp tuyến với đường tròn O tại K cắt AM, AN theo thứ tự tại E và F. Gọi giao điểm của OE, OF với MN theo thứ tự là P và Q. a) Chứng minh rằng tứ giác AMON là tứ giác nội tiếp. b) Chứng minh rằng 1/2 * EOF = MON. c) Chứng minh rằng ME/OF = OE/MP. d) Chứng minh rằng OK, EQ, FP đồng quy. Chúc quý thầy cô và các em học sinh giải đề thi thành công! Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và nắm vững kiến thức Toán để chuẩn bị cho kỳ thi sắp tới. Cảm ơn đã đọc!
Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Chào đón quý thầy cô và các em học sinh lớp 9, chúng tôi xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (hệ chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Kỳ thi sẽ diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Ngãi: + Đề bài 1: Cho bốn số thực a, b, c, d thỏa mãn a + b + c + d = 10 và a2 + b2 + c2 + d2 = 28. Hãy tìm giá trị lớn nhất của biểu thức T = ab + ac + ad. + Đề bài 2: Đề cho đường tròn tâm O, bán kính R và hai điểm B, C cố định trên (O), BC = R. Điểm A thay đổi trên cung lớn BC của (O) sao cho AB < AC. ... (Nội dung chi tiết và phức tạp của đề bài 2) + Đề bài 3: Một số nguyên dương được gọi là “số đặc biệt” nếu thỏa mãn các điều kiện nhất định. ... (Nội dung chi tiết và phức tạp của đề bài 3) Với những câu hỏi thú vị và phức tạp như vậy, chúng ta cần phải rèn luyện kiến thức và kỹ năng làm bài Toán một cách chắc chắn. Hy vọng rằng đề thi này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh và có thể vượt qua thử thách một cách xuất sắc.
Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Hà Nội Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết, do CLB Toán Lim (Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Nguyễn Văn Hoàng) thực hiện. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022-2023 của sở GD&ĐT Hà Nội: 1. Tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC, CA, AB tại D, E, F. a) Gọi AI gặp DF tại M. Chứng minh rằng: CM vuông góc AI. b) Gọi AI gặp DE tại N. Chứng minh rằng: DM = DN. c) Các tiếp tuyến tại M, N của (K, KM) cắt nhau tại S. Chứng minh rằng AS // ID. 2. Tập hợp A gồm 70 số nguyên dương không vượt quá 90, B là tập hợp các số có dạng x + y với x thuộc A, y thuộc A (x, y không nhất thiết phân biệt). a) Chứng minh rằng 68 thuộc B. b) Chứng minh rằng B chứa 91 số nguyên liên tiếp. 3. Tìm hai số nguyên dương m, n sao cho m^3 - m n và n^3 - m n đều là số nguyên tố. Hy vọng rằng các em học sinh sẽ học tập và thực hành trên đề thi này để chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Các thầy cô và các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2022 – 2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Dưới đây là trích dẫn các câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Hà Nội: 1. Tìm tất cả các số nguyên dương a, b và c sao cho các phương trình x2 – 2ax + b = 0, x2 – 2bx + c = 0 và x2 – 2cx + a = 0 đều có nghiệm là các số nguyên dương. 2. Trong tam giác ABC với AB < AC, nội tiếp đường tròn (O). Ba đường cao AD, BE và CF cùng đi qua điểm H. Gọi I và K lần lượt là trung điểm của các đoạn thẳng EF và BC. a) Chứng minh AI/AK = HI/HK. b) Chứng minh đường thẳng AH là tiếp tuyến của đường tròn ngoại tiếp tam giác IHK. c) Gọi P là chân đường vuông góc kẻ từ điểm H đến đường thẳng EF. Chứng minh đường thẳng DP song song với đường thẳng AI. 3. Trên bảng có hai số tự nhiên m và n. An và Bình chơi trò chơi loại bỏ số như sau: Mỗi lượt chơi, một người chơi chọn một số trên bảng để loại bỏ và thay thế bằng hiệu không âm của số đó với một ước số tự nhiên bất kỳ của số đó. Hai bạn chơi lần lượt và người không thể thực hiện lượt chơi là người thua cuộc. Biết rằng An chơi lượt đầu tiên, hãy chỉ ra chiến thuật để An chiến thắng với m = 2022 và n = 2023, cũng như với m = 2022 và n = 1981.