Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Quốc học Huế
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Quốc học Huế : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng (d) : y = mx+ 4 (m 6= 0) và parabol (P) : y = 2×2. Gọi A, B là các giao điểm của (d) và (P); A0 và B0 lần lượt là hình chiếu vuông góc của A và B lên trục hoành. Tìm m để diện tích tứ giác ABB0A0 bằng 15 cm2 (đơn vị đo trên các trục là xentimét). + Chứng minh phương trình x2 − (m2 − 1) x + m(m − 1)2 = 0 (x là ẩn số) luôn có nghiệm với mọi giá trị của m. Gọi x1, x2 là các nghiệm của phương trình đã cho, giả sử x1 ≤ x2, tìm m để x2 đạt giá trị nhỏ nhất. [ads] + Cho hai đường tròn (O) và (O0) cắt nhau tại hai điểm phân biệt A và B (điểm O nằm ngoài đường tròn (O0)). Từ một điểm M trên tia đối của tia AB, vẽ các tiếp tuyến MC, MD với đường tròn (O) (C, D là các tiếp điểm và D nằm trong đường tròn (O0)). Hai đường thẳng AC và AD cắt đường tròn (O0) lần lượt tại E và F (E và F không trùng với A), hai đường thẳng CD và EF cắt nhau tại I. 1. Chứng minh tứ giác BCEI nội tiếp và EI · BD = BI · AD. 2. Chứng minh I là trung điểm của đoạn thẳng EF. 3. Chứng minh khi M thay đổi trên tia đối của tia AB thì đường thẳng CD luôn đi qua một điểm cố định.
Đề thi vào 10 môn Toán (hệ số 1) năm 2020 - 2021 trường chuyên Trần Hưng Đạo - Bình Thuận
Đề thi vào 10 môn Toán (hệ số 1) năm 2020 – 2021 trường chuyên Trần Hưng Đạo – Bình Thuận gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi vào 10 môn Toán (hệ số 1) năm 2020 – 2021 trường chuyên Trần Hưng Đạo – Bình Thuận : + Cho phương trình 2×2 − 4mx − 2m2 − 1 = 0 (1) (với m là tham số). 1. Chứng tỏ phương trình (1) luôn có hai nghiệm phân biệt với mọi m. 2. Gọi x1, x2 là hai nghiệm của phương trình (1) khi m = 3, không giải phương trình hãy tính giá trị biểu thức Q = 8×21 − 50×1 − 70 8×22 − 50×2 − 70 + 2094. + Cho đường tòn (O; R) đường kính AB. Trên tia tiếp tuyến của Ax của (O; R) lấy điểm C khác A. Kẻ tiếp tuyến CD với (O; R) (D là tiếp điểm, D khác A). 1. Chứng minh rằng tứ giác OACD nội tiếp được một đường tròn. 2. Đường thẳng vuông góc với AB tại O cắt tia BD tại E. Chứng minh rằng BD.BE = 2R2. 3. Gọi F là trung điểm của OE. Chứng minh rằng ba điểm B, F, C thẳng hàng. + Cho ∆ABC có AB = c, AC = b, BC = a. Chứng minh rằng sin A/2 ≤ a b + c.
Đề thi vào 10 môn Toán (chuyên) năm 2020 - 2021 trường chuyên Hạ Long - Quảng Ninh
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh dành cho thí sinh thi vào các lớp 10 chuyên Toán; đề gồm có 01 trang với 05 bài toán tự luận, thời gian làm bài 150 phút; kỳ thi diễn ra vào ngày … tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Hạ Long – Quảng Ninh : + Cho x, y là hai số thực thỏa mãn x2 + 5y2 + 4xy + 3x + 4y = 27. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức M = x + 2y. + Từ một điểm A ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AB, AC và cát tuyến ADE với đường tròn (B, C là các tiếp điểm, AD < AE, DB < DC). Qua điểm O kẻ đường thẳng vuông góc với DE tại H, đường thẳng này cắt đường thẳng BC tại K. Chứng minh: 1. Tứ giác BCOH nộp tiếp. 2. KD là tiếp tuyến của đường tròn (O). 3. DBC = HBC. + Tìm tất cả các cặp số nguyên dương (a; b) sao cho ab(a + b)/(ab + 2) là số nguyên.
Đề thi vào 10 môn Toán (chuyên) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu
Đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2020 – 2021 trường chuyên Lê Quý Đôn – Lai Châu : + Cho Parabal có phương trình: y = 3×2 (P) và đường thẳng có phương trình y = 6x + 2m − 1 (d). Tìm m để parabal (P) cắt đường thẳng (d) tại hai điểm phân biệt. + Cho phương trình: x2 − 6x + 2m + 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x31 + x32 < 72. + Cho (O; R) và điểm A nằm ngoài đường tròn. Qua A kẻ hai tiếp tuyến AB và AC với đường tròn (B, C là hai tiếp điểm). I là một điểm thuộc đoạn BC (IB < IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt đường thẳng AB, AC lần lượt E và F. 1. Chứng minh tứ giác OIBE và tứ giác OIF C là các tứ giác nội tiếp. 2. Chứng minh I là trung điểm của EF. 3. Qua O kẻ đường thẳng vuông góc với OA cắt đường thẳng AB, AC lần lượt tại P và Q. Tìm vị trí của A để diện tích tam giác AP Q nhỏ nhất.