Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tách phân dạng toán đề thi TN THPT môn Toán (2017 2023) phần Giải tích

Nội dung Tách phân dạng toán đề thi TN THPT môn Toán (2017 2023) phần Giải tích Bản PDF - Nội dung bài viết Sản phẩm Tách phân dạng toán đề thi TN THPT môn Toán (2017-2023) phần Giải tíchCHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀMBÀI 1 - SỰ BIẾN THIÊN CỦA HÀM SỐBÀI 2 - CỰC TRỊ CỦA HÀM SỐCHUYÊN ĐỀ SỐ PHỨCBÀI 1 - ĐỊNH NGHĨA SỐ PHỨCBÀI 2 - CÁC PHÉP TOÁN SỐ PHỨCBÀI 3 - PHƯƠNG TRÌNH BẬC HAI Sản phẩm Tách phân dạng toán đề thi TN THPT môn Toán (2017-2023) phần Giải tích Được biên soạn bởi thầy giáo Dương Minh Hùng, tài liệu này bao gồm 559 trang tách phân dạng toán các đề thi tốt nghiệp THPT môn Toán từ năm 2017 đến năm 2023 phần Giải tích. Tài liệu cung cấp đáp án và lời giải chi tiết để giúp học sinh hiểu rõ bài tập. Bên dưới là một số chuyên đề quan trọng trong phần Giải tích: CHUYÊN ĐỀ ỨNG DỤNG ĐẠO HÀM BÀI 1 - SỰ BIẾN THIÊN CỦA HÀM SỐ Trong chuyên đề này, học sinh sẽ học về sự biến thiên của hàm số. Bao gồm cách tính đơn điệu của các hàm số chỉ dựa trên công thức, đồ thị hoặc biểu thức đạo hàm. BÀI 2 - CỰC TRỊ CỦA HÀM SỐ Chuyên đề này tập trung vào việc tìm cực trị của hàm số. Học sinh sẽ thực hành tìm điểm cực trị dựa trên đồ thị, biểu thức đạo hàm, hoặc các điều kiện đặc biệt. ... CHUYÊN ĐỀ SỐ PHỨC BÀI 1 - ĐỊNH NGHĨA SỐ PHỨC Chuyên đề này giới thiệu về số phức và các tính chất cơ bản của nó. Bao gồm cách thực hiện phép toán cơ bản với số phức và ứng dụng của nó trong các bài toán. BÀI 2 - CÁC PHÉP TOÁN SỐ PHỨC Trong phần này, học sinh sẽ học cách thực hiện các phép toán phức tạp với số phức, bao gồm việc xác định các yếu tố của số phức và giải các bài toán liên quan. BÀI 3 - PHƯƠNG TRÌNH BẬC HAI Chuyên đề này tập trung vào việc giải phương trình bậc hai, sử dụng các phương pháp như định lí Viet và ứng dụng trong các bài toán khác nhau liên quan đến đề tài này. Đây là một số chuyên đề quan trọng trong phần Giải tích của sách. Việc học và ôn tập những nội dung này sẽ giúp học sinh nắm vững kiến thức và kỹ năng cần thiết để vượt qua kỳ thi THPT môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 12 năm 2023 - 2024 trường THPT Phan Đăng Lưu - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán 12 năm học 2023 – 2024 trường THPT Phan Đăng Lưu, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm mã đề 132. Trích dẫn Đề khảo sát Toán 12 năm 2023 – 2024 trường THPT Phan Đăng Lưu – Hải Phòng : + Trong không gian Oxyz cho đường thẳng x t dy t z t và mặt cầu (S): xyz 729. Cho biết điểm M (-2;-2;-7), điểm P thuộc giao tuyến của mặt cầu (S) và mặt phẳng (Pxyz): 2 3 4 107 0. Khi điểm A di động trên đường thẳng d giá trị nhỏ nhất của biểu thức AM AP bằng? + Một người thợ gò làm một cái hòm dạng hình hộp chữ nhật có nắp bằng tôn. Biết rằng độ dài đường chéo hình hộp bằng 3 2dm và chi được sử dụng vừa đủ 2 18dm tôn. Với yêu cầu như trên người thợ có thể làm được cái hòm có thể tích lớn nhất bằng? + Cho khối trụ có chiều cao 20 cm. Cắt khối trụ bởi một mặt phẳng được thiết diện là hình elip có độ dài trục lớn bằng 10 cm. Thiết diện chia khối trụ ban đầu thành hai nửa, nửa trên có thể tích là V1, nửa dưới có thể tích là V2. Cho biết AM 12 cm AQ 8 cm PB 14 cm BN 6 cm (như hình vẽ), tỉ số 1 2 V bằng?
Đề khảo sát lần 2 Toán 12 năm 2023 - 2024 trường THPT Khoái Châu - Hưng Yên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 2 môn Toán 12 năm học 2023 – 2024 trường THPT Khoái Châu, tỉnh Hưng Yên; đề thi có đáp án trắc nghiệm mã đề 121. Trích dẫn Đề khảo sát lần 2 Toán 12 năm 2023 – 2024 trường THPT Khoái Châu – Hưng Yên : + Một chiếc cổng có dạng là một parabol (P) có kích thước như hình vẽ, biết chiều cao cổng bằng 4 m AB m. Người ta thiết kế cửa đi là một hình chữ nhật CDEF, phần còn lại dùng để trang trí. Biết phần tô đậm có diện tích nhỏ nhất là a a 3 2 m b c. Tính b + c? + Cho hàm số y fx không âm thỏa mãn điều kiện f x và f (0 0). Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y fx 2 quanh trục Ox bằng? + Trong không gian Oxyz cho ba điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt cầu xyz 25 điểm P thay đổi trên mặt cầu (S). Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của biểu thức 22 2 Q PA PB PC 3. Giá trị M m bằng?
Đề khảo sát Toán 12 lần 2 năm 2023 - 2024 trường THPT Hùng Thắng - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 2 năm học 2023 – 2024 trường THPT Hùng Thắng, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm mã đề 101 – 102. Trích dẫn Đề khảo sát Toán 12 lần 2 năm 2023 – 2024 trường THPT Hùng Thắng – Hải Phòng : + Trong không gian Oxyz cho mặt cầu (S) có tâm I (1;2;3) và đi qua điểm S (0;4;1). Xét khối nón (N) có đỉnh S và nội tiếp trong khối cầu (S). Khi diện tích xung quanh của hình nón (N) lớn nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình dạng x by cz d 0. Giá trị của bc d 2 bằng? + Cho hàm số y fx xác định và liên tục trên R có fx 0 3 f e 1. Biết f x. Tìm tất cả giá trị của tham số m để phương trình fx m có hai nghiệm thực phân biệt. + Từ hình vuông có cạnh bằng 6 người ta cắt bỏ các tam giác vuông cân tạo thành hình tô đậm như hình vẽ. Sau đó người ta gập thành hình hộp chữ nhật không nắp. Thể tích lớn nhất của khối hộp bằng?
Đề khảo sát Toán 12 lần 2 năm 2023 - 2024 trường THPT Hậu Lộc 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 lần 2 năm học 2023 – 2024 trường THPT Hậu Lộc 1, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát Toán 12 lần 2 năm 2023 – 2024 trường THPT Hậu Lộc 1 – Thanh Hóa : + Trong không gian Oxyz cho ba điểm A(2;1;3), B(6;5;5), C(3;1;2). Gọi (S) là mặt cầu có đường kính nhỏ nhất đi qua ba điểm ABC. Xét khối nón (N) có đỉnh A, đường tròn đáy nằm trên mặt cầu (S). Khi khối nón (N) có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của (N) có phương trình là 2 0 x by cz d. Giá trị của bcd bằng? + Người thợ gia công của một cơ sở chất lượng cao X cắt một miếng tôn hình tròn với bán kính 60cm thành ba miếng hình quạt bằng nhau. Sau đó người thợ ấy quấn và hàn ba miếng tôn đó để được ba cái phễu hình nón. Hỏi thể tích V của mỗi cái phễu đó bằng bao nhiêu? + Trong không gian Oxyz cho mặt cầu Sx y z x y z 6 4 6 26 0 và đường thẳng 1 21 xy z d. Biết rằng trên đường thẳng d luôn tồn tại điểm M xyz với x > 0 sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) thỏa mãn AMB = 60, BMC = 90, CMA = 120. Khi đó giá trị biểu thức x yz 2 bằng?