Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 11 môn Toán đầu năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lớp 11 môn Toán đầu năm 2023 2024 trường THPT Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán lớp 11 đầu năm học 2023 – 2024 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi gồm 06 trang, cấu trúc 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 101. Trích dẫn Đề khảo sát Toán lớp 11 đầu năm 2023 – 2024 trường THPT Thuận Thành 1 – Bắc Ninh : + Nhà của ba bạn A B C nằm ở ba vị trí tạo thành một tam giác vuông tại B (như hình vẽ). Biết AB km BC km 10 47 và ba bạn tổ chức họp mặt ở nhà bạn C. Bạn B hẹn chở bạn A tại vị trí M trên đoạn đường BC. Từ nhà, bạn A đi xe buýt đến điểm hẹn M với vận tốc 25 km h và từ M hai bạn AB di chuyển đến nhà bạn C bằng xe máy với vận tốc 50 km h. Biết thời gian bạn A đến nhà bạn C là 1 giờ 30 phút. Hỏi khoảng cách từ M đến nhà bạn B (tính bằng km) nằm trong khoảng nào dưới đây? + Hai chiếc thuyền A và B ở vị trí được minh họa như hình dưới đây. Từ điểm K trên mặt đất người ta nhìn thấy hai chiếc thuyền A và B theo hai phương tạo với nhau một góc 0 15. Từ điểm K người ta nhìn thấy chiếc thuyền A theo phương tạo với phương nằm ngang một góc 0 50. Gọi I là hình chiếu của K trên đường thẳng AB. Biết khoảng cách từ K đến I bằng 380m. Khoảng cách giữa A và B bằng bao nhiêu mét (làm tròn đến hàng đơn vị)? + Một người nông dân có 15000000 đồng để làm một cái hàng rào hình chữ E dọc theo một con sông (như hình vẽ). Bên trong hàng rào là hai mảnh đất hình chữ nhật dùng để trồng rau. Đối với mặt hàng rào song song với bờ sông thì chi phí nguyên vật liệu là 60000 đồng một mét, còn đối với ba mặt hàng rào song song nhau thì chi phí nguyên vật liệu là 50000 đồng một mét. Diện tích lớn nhất của mảnh đất mà người nông dân đó rào được là?

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh lớp 11 môn Toán THPT năm 2017 2018 sở GD và ĐT Nghệ An (Bảng A)
Nội dung Đề thi chọn HSG tỉnh lớp 11 môn Toán THPT năm 2017 2018 sở GD và ĐT Nghệ An (Bảng A) Bản PDF Đề thi chọn HSG tỉnh Toán lớp 11 THPT năm 2017 – 2018 sở GD và ĐT Nghệ An (Bảng A) gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào chiều ngày 16 tháng 03 năm 2018, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán lớp 11 THPT : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Hình chiếu vuông góc của điểm D lên các đường thẳng AB, BC lần lượt là M(-2; 2), N(2; -2); đường thẳng BD có phương trình 3x – 5y + 1 = 0. Tìm tọa độ điểm A. + Một hộp chứa 17 quả cầu đánh số từ 1 đến 17. Lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất sao cho tổng các số ghi trên 3 quả cầu đó là một số chẵn. [ads] + Cho hình chóp S.ABCD, có đáy là hình thoi cạnh a, SA = SB = SC = a. Đặt SD = x (0 < x < a√3). a) Tính góc giữa đường thẳng SB và mặt phẳng (ABCD), biết rằng x = a. b) Tìm x theo a để tích AC.SD đạt giá trị lớn nhất.
Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội
Nội dung Đề thi Olympic lớp 11 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF Đề thi Olympic Toán lớp 11 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán khối 11, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán lớp 11 năm 2017 – 2018 : + Một đoàn tàu có 6 toa ở sân ga, trên sân ga có 6 hành khách chuẩn bị lên tàu, mỗi người độc lập với nhau và chọn toa tàu một cách ngẫu nhiên. a. Hỏi có bao nhiêu cách xếp 6 hành khách lên các toa tàu đó sao cho 6 người cùng lên một toa hoặc mỗi người lên một toa khác nhau? b. Tính xác suất sao cho một toa có 3 hành khách, một toa có 2 hành khách, 1 toa có 1 hành khách, còn 3 toa còn lại không có ai lên. [ads] + Biết rằng các số x, 2y – x, x + 2y theo thứ tự lập thành cấp số cộng. Đồng thời các số 1, y – 1, x + 2y – 1 theo thứ tự lập thành cấp số nhân. Hãy tìm x, y. + Xét khai triển (x + 1/x)^n (x ≠ 0, n ≥ 3, n ∈ N*). Biết tích của số hạng thứ tư tính từ phải sang và số hạng thứ tư kể từ trái sang bằng 14400. Tìm n.
Đề thi chọn HSG lớp 11 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Thanh Hóa
Nội dung Đề thi chọn HSG lớp 11 môn Toán cấp tỉnh năm học 2017 2018 sở GD và ĐT Thanh Hóa Bản PDF Đề thi chọn HSG Toán lớp 11 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Thanh Hóa gồm 1 trang với 5 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút (không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 09 tháng 3 năm 2018, đề thi HSG Toán lớp 11 có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán lớp 11 : + Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Một điểm M di động trên cạnh đáy BC (M khác B, C). Mặt phẳng (α) đi qua M đồng thời song song với hai đường thẳng SB và AC. Xác định thiết diện của hình chóp S.ABCD cắt bởi (α) và tìm vị trí của điểm M để thiết diện đó có diện tích lớn nhất. + Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh của lớp 11A, 3 học sinh của lớp 11B và 5 học sinh của lớp 11C thành một hàng ngang. Tính xác suất để không có học sinh của cùng một lớp đứng cạnh nhau. [ads] + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A. Các điểm M, N lần lượt thuộc các cạnh AB, AC sao cho AM = AN (M, N không trùng với các đỉnh của tam giác). Đường thẳng d1 đi qua A và vuông góc với BN cắt cạnh BC tại H(6/5; -2/3), đường thẳng d2 đi qua M và vuông góc với BN cắt cạnh BC tại K(2/5; 2/3). Tìm tọa độ các đỉnh của tam giác ABC, biết rằng đỉnh A thuộc đường thẳng Δ: 5x + 3y + 13 = 0 và có hoành độ dương.