Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B, trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A được cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi công ty phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất, biết rằng xe A chỉ chở được tối đa 20 người và 0,6 tấn hàng, xe B chở được tối đa 10 người và 1,5 tấn hàng. + Cho tam giác ABC có BC a CA b AB c. Ký hiệu a h là độ dài đường cao xuất phát từ đỉnh A và p là nửa chu vi của tam giác ABC. 1) Chứng minh 2 2 b c a b C c B cos cos. 2) Chứng minh tam giác ABC cân nếu thỏa mãn điều kiện. + Trong mặt phẳng tọa độ Oxy cho ABC biết B2 1 đường thẳng chứa đường cao và đường phân giác trong qua hai đỉnh A C có phương trình lần lượt là 3 4 27 0 x y và x y 2 5 0. 1) Viết phương trình tổng quát của đường thẳng BC và tìm tọa độ điểm C. 2) Viết phương trình tổng quát của đường thẳng AB.

Nguồn: toanmath.com

Đọc Sách

Đề thi Olympic lớp 10 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội
Nội dung Đề thi Olympic lớp 10 môn Toán năm 2017 2018 cụm trường Thanh Xuân Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 10 năm 2017-2018 cụm trường Thanh Xuân & Cầu Giấy - Hà Nội Đề thi Olympic Toán lớp 10 năm 2017-2018 cụm trường Thanh Xuân & Cầu Giấy - Hà Nội Đề thi Olympic Toán lớp 10 năm 2017-2018 của cụm trường Thanh Xuân & Cầu Giấy - Hà Nội bao gồm 1 trang với bài toán tự luận, thời gian làm bài 150 phút. Kỳ thi nhằm tuyển chọn các em Học sinh giỏi môn Toán khối 10, đề thi có lời giải chi tiết. Một số câu hỏi trong đề thi: Cho hàm số \(y = x^2 - 4x + 3\) có đồ thị (P). Hãy lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. Tìm các số a, b, c sao cho hàm số \(y = f(x) = ax^2 + bx + c\) có đồ thị là một parabol với đỉnh là I(2; 9) và đi qua điểm A(-1; 0). Cho tứ giác ABCD có AC vuông góc BD và nội tiếp đường tròn tâm O bán kính R = 1. Gọi diện tích tứ giác ABCD là S và độ dài các cạnh là AB = a, BC = b, CD = c, DA = d. Chứng minh rằng \((ab + cd)(ad + bc) = 8S\). Đây là một đề thi không chỉ giúp học sinh rèn luyện kỹ năng giải các bài toán mà còn phản ánh được năng lực, sự sáng tạo và logic trong tư duy toán học của học sinh. Hy vọng rằng các em sẽ đạt kết quả tốt trong kỳ thi này.
Đề thi chọn HSG lớp 10 môn Toán năm học 2017 2018 cụm Tân Yên Bắc Giang
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm học 2017 2018 cụm Tân Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi chọn HSG Toán lớp 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang Đề thi chọn HSG Toán lớp 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang Đề thi chọn HSG Toán lớp 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang bao gồm 1 trang với 8 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Kỳ thi được tổ chức vào ngày 28/01/2018. Đề thi cung cấp lời giải chi tiết cho từng bài toán. Trích dẫn một số câu hỏi trong đề thi chọn HSG Toán lớp 10: Cho phương trình x^2 + 2x + 3m – 4 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm và để phương trình có hai nghiệm thỏa mãn điều kiện x1^2.x2^2 ≤ x1^2 + x2^2 + 4. Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; 2) và B(4; 3). Tìm tọa độ điểm M nằm trên trục hoành sao cho góc AMB bằng 45 độ. Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN. Đề thi chọn HSG Toán lớp 10 năm học 2017 – 2018 cụm Tân Yên – Bắc Giang là cơ hội để học sinh thể hiện kiến thức và kỹ năng giải toán của mình. Các bài toán được chọn lọc kỹ càng, đa dạng về mặt nội dung để giúp học sinh phát triển tư duy logic và sự sáng tạo trong quá trình giải quyết vấn đề toán học.
Đề thi chọn HSG lớp 10 môn Toán năm học 2017 2018 trường THPT Quỳ Hợp 1 Nghệ An
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm học 2017 2018 trường THPT Quỳ Hợp 1 Nghệ An Bản PDF - Nội dung bài viết Đề thi chọn HSG Toán lớp 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 Đề thi chọn HSG Toán lớp 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 Đề thi chọn Học sinh giỏi môn Toán lớp 10 năm học 2017 - 2018 của trường THPT Quỳ Hợp 1 - Nghệ An bao gồm 1 trang với 5 bài toán tự luận. Thời gian làm bài là 150 phút, và thí sinh không được sử dụng máy tính cầm tay khi làm bài. Kỳ thi diễn ra vào ngày 30/01/2018, và đề thi cung cấp lời giải chi tiết cho các bài toán. Trích dẫn một số bài toán từ đề thi: Bài toán 1: Cho parabol (P): y = ax^2 + bx - 1. a. Tìm các giá trị của a và b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a và b ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M và N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y - 3 = 0. Bài toán 2: Cho hình vuông ABCD cạnh có độ dài là a. Gọi E và F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. Bài toán 3: Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm giá trị của k để AM vuông góc với PN. File WORD (dành cho giáo viên) chứa đầy đủ nội dung của đề thi.