Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích

Nội dung Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Bản PDF - Nội dung bài viết Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Chinh phục điểm 8 9 10 bài tập trắc nghiệm Giải tích Cuốn sách Chinh phục điểm 8 – 9 – 10 bài tập trắc nghiệm Giải tích có 338 trang được biên soạn bởi các tác giả Mẫn Ngọc Quang, Đỗ Xuân Sỹ, Phạm Minh Tuấn nhằm mục đích giúp các em học sinh luyện tập các dạng toán vận dụng cao thường gặp trong đề thi THPT Quốc gia môn Toán. Nội dung sách được chia thành 8 phần cụ thể để học sinh dễ dàng theo dõi và ôn tập. Phần 1 tập trung vào các nội dung liên quan đến hàm số nâng cao, bao gồm cách giải nhanh, các phương pháp chứng minh, và các bài toán áp dụng. Phần 2 tập trung vào bài toán thực tế và tối ưu kinh doanh để học sinh hiểu rõ ứng dụng của toán học trong cuộc sống. Phần 3 tập trung vào mũ và logarit nâng cao, giúp học sinh nắm vững kiến thức cơ bản và ứng dụng chúng vào các bài toán phức tạp. Phần 4 tập trung vào tích phân ứng dụng và cách sử dụng Casio để tính toán một cách nhanh chóng và chính xác. Phần 5 bàn về biểu thức tổ hợp và nhị thức Newton, phần 6 tập trung vào số phức và các phương pháp tính toán liên quan. Phần 7 tập trung vào xác suất và luyện tập bài toán cao cấp. Phần 8 tập trung vào tính liên tục của hàm số để học sinh có cái nhìn tổng quan về toán học phổ biến và ứng dụng rộng rãi. Tổng thể, cuốn sách này là một tài liệu hữu ích cho học sinh muốn nắm vững và áp dụng kiến thức giải tích vào thực tế, cung cấp đầy đủ các dạng bài tập và phương pháp giải chi tiết, phù hợp cho việc ôn tập và rèn luyện kỹ năng toán học của học sinh.

Nguồn: sytu.vn

Đọc Sách

Các dạng bài tập VDC lôgarit
Tài liệu gồm 19 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lôgarit, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lôgarit: A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lôgarit. 2. Tính chất. 3. Quy tắc tính lôgarit. a. Lôgarit của một tích. b. Lôgarit của một thương. c. Lôgarit của một lũy thừa. 4. Đổi cơ số. 5. Lôgarit thập phân – lôgarit tự nhiên. a. Lôgarit thập phân. b. Lôgarit tự nhiên. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. Dạng 2. Đẳng thức chứa logarit. Dạng 3. Biểu thị biểu thức theo một biểu thức đã cho và từ đó tìm giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN).
Các dạng bài tập VDC lũy thừa và hàm số lũy thừa
Tài liệu gồm 17 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) lũy thừa và hàm số lũy thừa, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số lôgarit) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập VDC lũy thừa và hàm số lũy thừa: CHỦ ĐỀ 1 . LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm lũy thừa. 2. Tính chất của lũy thừa với số mũ thực. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Các phép toán biến đổi lũy thừa. Dạng 2. So sánh, đẳng thức và bất đẳng thức đơn giản. CHỦ ĐỀ 2 . HÀM SỐ LŨY THỪA. A. KIẾN THỨC CƠ BẢN CẦN NẮM 1. Khái niệm hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Khảo sát hàm số lũy thừa. B. PHÂN DẠNG VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP Dạng 1. Tìm tập xác định của hàm số lũy thừa. Dạng 2. Đồ thị hàm số lũy thừa.
Hệ thống bài tập trắc nghiệm VDC PT - BPT - HPT mũ - logarit (phần 11 - 20)
Tài liệu gồm 21 trang được biên soạn bởi thầy giáo Lương Tuấn Đức (facebook: Giang Sơn), tuyển chọn hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (từ phần 11 đến phần 20), giúp học sinh tiếp cận với các dạng toán nâng cao trong chương trình Giải tích 12 chương 2 (hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn tài liệu hệ thống bài tập trắc nghiệm vận dụng cao, phân loại phương trình, bất phương trình, hệ phương trình mũ – logarit (phần 11 – 20): + Đường thẳng x = k cắt đồ thị hàm số y = log5 x và đồ thị hàm số y = log5 (x + 4). Khoảng cách giữa các giao điểm là 1/2. Biết k = a + √b, trong đó a và b là các số nguyên. Khi đó tổng a + b bằng? [ads] + Cho ba số thực dương x, y, z thỏa mãn log5 x = log12 y = log84 z = log85 (x + y + z). Khi đó giá trị biểu thức logxyz 2020 nằm trong khoảng nào sau đây? + Cho các số thực dương a, b thỏa mãn đẳng thức ln (ab) + a + 2 = e^(a – eb) + b(a + e). Giá trị biểu thức ln (2a + 3b) nằm trong khoảng nào sau đây? Xem thêm : Hệ thống bài tập trắc nghiệm vận dụng cao, phân loại hàm số mũ, logarit (phần 1 – 10)
Bài tập VD VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit
Tài liệu gồm 86 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 131 câu hỏi và bài tập trắc nghiệm chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số lôgarit, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu bài tập VD – VDC hàm số luỹ thừa, hàm số mũ và hàm số lôgarit: + Vấn đề 1. Một số bài toán thực tế – biến đổi mũ – logarit. + Vấn đề 2. Phương trình và bất phương trình mũ – logarit. + Vấn đề 3. Phương trình và bất phương trình mũ – logarit chứa tham số. + Vấn đề 4. Phương trình và bất phương trình mũ – logarit nhiều ẩn. + Vấn đề 5. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức chứa mũ – logarit.