Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 Toán 10 năm 2023 - 2024 trường THPT chuyên Thái Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT chuyên Thái Bình, tỉnh Thái Bình; đề thi có đáp án trắc nghiệm mã đề 101 – 202 – 303 – 404. Trích dẫn Đề khảo sát lần 2 Toán 10 năm 2023 – 2024 trường THPT chuyên Thái Bình : + Một chiếc cổng như hình vẽ, trong đó CD m AD m 6 4, phía trên cổng có hình dạng parabol. Người ta cần thiết kế cổng sao cho những chiếc xe container chở hàng với bề ngang thùng xe là 4m, chiều cao là 5,2m có thể đi qua được (chiều cao được tính từ mặt đất đến nóc thùng xe và thùng xe có dạng hình hộp chữ nhật). Hỏi đỉnh I của parabol cách mặt đất tối thiểu bao nhiêu mét để chiếc cổng đạt được yêu cầu trên? + Cho hình chữ nhật ABCD. Tập hợp các điểm M thỏa mãn MA MB MC MD là: A. Đường tròn đường kính AB. B. Đường tròn đường kính BC. C. Đường trung trực của cạnh AD. D. Đường trung trực của cạnh AB. + Cho hàm số 2 f x ax bx c a 0 có đồ thị như hình vẽ dưới đây. Tìm số giá trị nguyên của tham số m để phương trình fx m (2024) có bốn nghiệm phân biệt.

Nguồn: toanmath.com

Đọc Sách

Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4
Nội dung Đề thi khảo sát chất lượng lớp 10 môn Toán năm học 2016 2017 trường THPT Thạch Thành 1 Thanh Hóa lần 4 Bản PDF Đề thi khảo sát chất lượng Toán lớp 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.