Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Hậu Lộc 2 - Thanh Hóa lần 3

Đề thi thử Toán THPTQG 2018 trường THPT Hậu Lộc 2 – Thanh Hóa lần 3 mã đề 357 được biên soạn theo hình thức trắc nghiệm với 50 câu hỏi, thời gian làm bài 90 phút, thông qua các kỳ thi thử Toán học sinh sẽ làm quen với quy chế thi cử, nắm vững được dạng đề, dạng câu hỏi, rèn luyện tốc độ làm bài, kỹ năng giải toán … từ đó có sự chuẩn bị chu đáo cho kỳ thi THPT Quốc gia 2018 môn Toán, đề thi có đáp án . Trích dẫn đề thi thử Toán THPTQG 2018 : + Học sinh A thiết kế bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 10 nút, mỗi nút được ghi một số tự nhiên từ 0 đến 9 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn 3 nút liên tiếp khác nhau sao cho 3 số trên 3 nút theo thứ tự đã nhấn tạo thành một dãy số tăng và có tổng bằng 10. Học sinh B chỉ nhớ được chi tiết 3 nút tạo thành dãy số tăng. Tính xác suất để B mở được cửa phòng học đó biết rằng nếu bấm sai 3 lần liên tiếp cửa sẽ tự động khóa lại( không cho mở nữa). [ads] + Cho ba số thực dương a, b, c theo thứ tự lập thành một cấp số nhân, đồng thời ba số lna, 2lnb, 3lnc theo thứ tự lập thành cấp số cộng. Khẳng định nào sau đây là đúng? A. Phương trình (b + 2017)^x + (c + 2016)^x = (a + 2018)^x có hai nghiệm. B. Phương trình (a + 2018)^x + (c + 2016)^x = (b + 2017)^x vô nghiệm. C. Phương trình 2016a^x – 4034b^x + 2018c^x = 0 có nghiệm duy nhất. D. Phương trình (a + 2018)^x + (b + 2017)^x = 2(c + 2016)^x vô nghiệm. + Để đảm bảo an toàn khi lưu thông trên đường, các xe ô tô khi dừng đèn đỏ phải cách nhau tối thiểu 1m. Một ô tô A đang chạy với vận tốc 12 m/s bỗng gặp ô tô B đang dừng đèn đỏ nên ô tô A hãm phanh và chuyển động chậm dần đều với vận tốc được biểu thị bởi công thức vA(t) = 12 – 4t (đơn vị tính bằng m/s), thời gian t tính bằng giây. Hỏi rằng để 2 ô tô A và B đạt khoảng cách an toàn khi dừng lại thì ô tô A phải hãm phanh khi cách ô tô B một khoảng ít nhất là bao nhiêu mét?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GDĐT Gia Lai
Thứ Hai ngày 13 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Gia Lai mã đề 914 gồm 08 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán sở GD&ĐT Gia Lai : + Cho tứ diện đều ABCD có cạnh bằng 2cm. Gọi M là trung điểm của cạnh AB và N là điểm thuộc cạnh CD sao cho NC = -2ND. Mặt phẳng (a) chứa MN và song song với cạnh AC, cắt cạnh AD tại K và cắt cạnh BC tại H. Thể tích của khối đa diện có tất cả các đỉnh là các điểm B, D, N, H, M và K bằng? + Xét các số thực dương a, b, x, y thỏa mãn log2 (x – 2) + log3 (y − 3) = 1. Khi biểu thức P = 3x + 5y đạt giá trị nhỏ nhất thì 5x – 3y = 1 + a/b.√3 với a, b là hai số nguyên dương và a/b là phân số tối giản. Giá trị của biểu thức T = a + 2b bằng? [ads] + Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6% một năm. Biệt rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn đề tính lãi cho năm tiếp theo. Sau 10 năm người đó thu được (cả số tiền gửi ban đầu và lãi) nhiều hơn số tiền gửi bạn đầu là 100 triệu đồng. Hỏi số tiền ban đầu người đó gửi vào ngận hàng gần nhất với số nào dưới đây (giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra)?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường Lý Thái Tổ - Bắc Ninh
Ngày … tháng 07 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường Lý Thái Tổ – Bắc Ninh được biên soạn dựa trên ma trận đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD = 120. Gọi O là giao điểm của hai đường chéo AC và BD. Biết SA = SC, SB = SD, mặt phẳng (SCD) tạo với mặt phẳng (ABCD) một góc x thỏa mãn tan x = 2. Mặt phẳng (α) qua A và vuông góc với SC, (α) cắt các cạnh SB, SC, SD lần lượt tại các điểm B’, C’, D’. Thể tích của khối chóp O.AB’C’D’ bằng? [ads] + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Xét hàm số g(x) = √(3 – x)/(x – 6)[f(x) – m]. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-86;86] để đồ thị hàm số g(x) có đúng ba đường tiệm cận? + Một người gửi tiết kiệm vào ngân hàng với lãi suất 8,4% trên năm và tiền lãi hàng năm được nhập vào tiền vốn. Tính số năm tối thiểu người đó cần gửi để số tiền thu được nhiều hơn 2 lần số tiền gửi ban đầu.
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội
Chiều Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Đại học Sư phạm Hà Nội tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội mã đề 212 gồm có 06 trang, đề có dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 211, 212, 213, 214. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội : + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây, trong đó m thuộc R. Chọn khẳng định đúng: A. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m thuộc R\{2}. B. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m thuộc R. C. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m thuộc R. D. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m thuộc R. [ads] + Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = 1, AA’ = 5. Một mặt phẳng (P) cắt các cạnh AA’, BB’, CC lần lượt tại A1, B1, C1 sao cho AA1 = 1, BB1 = 2. Gọi V1 và V2 lần lượt là thể tích khối đa diện ABC.A1B1C1 và A’B’C’.A1B1C1. Giá trị lớn nhất của tích V1.V2 thuộc khoảng nào dưới đây? + Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện |z – 3| = 2 là: A. Đường tròn tâm I(3;0), bán kính R = 2. B. Đường thẳng x = 3. C. Đường thẳng y = 2. D. Đường tròn tâm I(2;0), bán kính R = 3.
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 4 trường chuyên Nguyễn Trãi - Hải Dương
Chủ Nhật ngày 12 tháng 07 năm 2020, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ tư. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 4 trường chuyên Nguyễn Trãi – Hải Dương mã đề 889 gồm có 06 trang, đề thi có dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 891, 890, 889, 888. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 4 trường chuyên Nguyễn Trãi – Hải Dương : + Cho mặt cầu (S) bán kính R = 5 cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 cm. Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của khối tứ diện ABCD. [ads] + Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng/tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu? + Trong hệ trục tọa độ Oxy cho A(-2;0), B(-2;2), C(4;2), D(4;0). Chọn ngẫu nhiên một điểm có tọa độ (x;y); (với x, y là các số nguyên) nằm trong hình chữ nhật ABCD (kể cả các điểm nằm trên cạnh). Gọi A là biến cố: “x và y đều chia hết cho 2”. Xác suất của biến cố A là?