Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2019 2020 trường THCS Nguyễn Du TP HCM

Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm 2019 2020 trường THCS Nguyễn Du TP HCM Bản PDF - Nội dung bài viết Đề thi học kỳ 2 Toán lớp 9 năm 2019 – 2020 trường THCS Nguyễn Du TP HCM Đề thi học kỳ 2 Toán lớp 9 năm 2019 – 2020 trường THCS Nguyễn Du TP HCM Ngày 02 tháng 06 năm 2020, học sinh lớp 9 trường THCS Nguyễn Du đã tham gia kỳ thi kiểm tra chất lượng môn Toán cuối học kỳ 2. Đề thi gồm 6 bài toán tự luận và thời gian làm bài là 90 phút. Một trong những bài toán trong đề thi đề cập đến hai trường THCS A và B, với tổng số 1250 thí sinh dự thi vào lớp 10 THPT. Biết rằng tỉ lệ trúng tuyển vào lớp 10 của trường A và trường B lần lượt là 80% và 85%. Nếu trường A trúng tuyển nhiều hơn trường B là 10 thí sinh, hãy tính số lượng thí sinh dự thi vào lớp 10 THPT của mỗi trường. Bài toán tiếp theo đề cập đến việc đổ nước vào một chiếc thùng hình trụ có bán kính 20cm. Khi nghiêng thùng sao cho mặt nước chạm miệng thùng và đáy thùng, mặt nước tạo với đáy một góc 45°. Hỏi diện tích xung quanh và thể tích của thùng là bao nhiêu? Bài toán cuối cùng yêu cầu học sinh chứng minh một số tính chất trong tam giác nội tiếp ABC, với đường tròn ngoại tiếp tứ giác BFEC và CEHD. Học sinh cần chứng minh rằng các đường thẳng EF, IK, và trung tuyến G của tam giác cắt nhau tại điểm S và G là trung điểm của PQ.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).
Đề thi học kì 2 Toán 9 năm 2022 - 2023 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng cuối học kì 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi học kì 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi bằng 76 m, diện tích bằng 240 m2. Tìm chiều dài và chiều rộng của mảnh vườn đó. + Trong cùng một mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m + 1)x – 2m – 3 và Parabol (P): y = −x2 (với m là tham số). a) Tìm tọa độ giao điểm của Parabol (P) và đường thẳng (d) khi m = 1. b) Tìm m để Parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt, sao cho hoành độ của hai điểm cùng nhỏ hơn 2. + Cho đường tròn (O). Từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MCD không đi qua tâm O (điểm C nằm giữa điểm M và điểm D; cát tuyến MDC và điểm A cùng thuộc nửa mặt phẳng bờ MO). Gọi H là giao điểm của MO và AB. a) Chứng minh: OM vuông góc với AB và MA2 = MC.MD; b) Chứng minh: Tứ giác CDOH nội tiếp đường tròn; c) Vẽ dây cung CE của đường tròn (O) đi qua H. Chứng minh DE song song với AB.