Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán và phương pháp giải Toán 7 - Ngô Văn Thọ

Tài liệu gồm 166 trang phân dạng và hướng dẫn phương pháp giải Toán 7 toàn tập – Đại số và Hình học, tài liệu được biên soạn bởi thầy Ngô Văn Thọ. Trong mỗi chuyên đề (ứng với mỗi chương) đều được phân dạng chi tiết, nếu các bước giải toán, các vì dụ minh họa có giải chi tiết và phần bài tập áp dụng để học sinh tự luyện. Nội dung tài liệu : A. PHẦN ĐẠI SỐ CHUYÊN ĐỀ I . SỐ HỮU TỈ + Dạng 1. Thực hiện phép tính + Dạng 2. Biểu diễn số hữu tỉ trên trục số + Dạng 3. So sánh số hữu tỉ + Dạng 4. Tìm điều kiện để một số là số hữu tỉ dương, âm, là số 0 (không dương không âm) + Dạng 5. Tìm các số hữu tỉ nằm trong một khoảng + Dạng 6. Tìm x để biểu thức nguyên + Dạng 7. Các bài toán tìm x + Dạng 8. Các bài toán tìm x trong bất phương trình + Dạng 9. các bài toán tính tổng theo quy luật CHUYÊN ĐỀ II . GIÁ TRỊ TUYỆT ĐỐI + Dạng 1. Tính giá trị biểu thức và rút gọn biểu thức + Dạng 2. |A(x)| = k (Trong đó A(x) là biểu thức chứa x, k là một số cho trước) + Dạng 3. |A(x)| = |B(x)| (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 4. |A(x)| = B(x) (Trong đó A(x) và B(x) là hai biểu thức chứa x) + Dạng 5. Đẳng thức chứa nhiều dấu giá trị tuyệt đối + Dạng 6. Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt + Dạng 7. Dạng hỗn hợp + Dạng 8. |A| + |B| = 0 + Dạng 9. |A| + |B| = |A + B| + Dạng 10. |f(x)| > a + Dạng 11. Tìm x sao cho |f(x)| < a + Dạng 12. Tìm cặp giá trị (x; y) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối + Dạng 13. |A| + |B| < m với m > 0 + Dạng 14. Sử dụng bất đẳng thức. |a| + |b| ≥ |a + b| xét khoảng giá trị của ẩn số + Dạng 15. Sử dụng phương pháp đối lập hai vế của đẳng thức + Dạng 16. Tìm GTLN – GTNN của biểu thức CHUYÊN ĐỀ III . LŨY THỪA + Dạng 1. Tính giá trị biểu thức + Dạng 2. Các bài toán tìm x + Dạng 3. Các bài toán so sánh + Dạng 4. Các bài toán chứng minh chia hết CHUYÊN ĐỀ IV . TỈ LỆ THỨC + Dạng 1. Lập tỉ lệ thức từ các số đã cho + Dạng 2. Tìm x từ tỉ lệ thức + Dạng 3. Chứng minh tỉ lệ thức + Dạng 4. Cho dãy tỉ số bằng nhau và một tổng, tìm x, y + Dạng 5. Cho dãy tỉ số, tính giá trị một biểu thức + Dạng 6. Cho dãy tỉ số bằng nhau và một tích, tìm x, y + Dạng 7. Ứng dụng tỉ lệ thức chứng minh bất đẳng thức CHUYÊN ĐỀ V . TỈ LỆ THUẬN – TỈ LỆ NGHỊCH + Dạng 1. Tính hệ số tỉ lệ, biểu diễn x theo y, tính x (hoặc y) khi biết y (hoặc x) + Dạng 2. Cho x và y tỉ lệ thuận hoặc tỉ lệ nghịch, hoàn thành bảng số liệu + Dạng 3. Nhận biết hai đại lượng có tỉ lệ thuận hay tỉ lệ nghịch + Dạng 4.Cho x tỉ lệ thuận (tỉ lệ nghịch) với y, y tỉ lệ thuận (tỉ lệ nghịch) với z. Hỏi mối quan hệ của x và z và tính hệ số tỉ lệ + Dạng 5. Các bài toán đố [ads] CHUYÊN ĐỀ VI . CĂN BẬC 2 + Dạng 1. Tính giá trị biểu thức và viết căn bậc hai của một số + Dạng 2. So sánh hai căn bậc hai + Dạng 3. Tìm x biết √f(x) = a + Dạng 4. Tìm điều kiện xác định của các biểu thức chứa căn + Dạng 5. Chứng minh một số là số vô tỉ ĐỔI SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN RA PHÂN SỐ TỐI GIẢN SỐ THẬP PHÂN HỮU HẠN – SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN + Dạng 1. Nhận biết một phân số là số thập phân hữu hạn hay vô hạn tuần hoàn + Dạng 2. Viết một phân số hoặc một tỉ số dưới dạng số thập phân + Dạng 3. Viết số thập phân hữu hạn dưới dạng phân số tối giản + Dạng 4. Viết số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản CHUYÊN ĐỀ VII . HÀM SỐ VÀ ĐỒ THỊ + Dạng 1. Xác định xem đại lượng y có phải là hàm số của đại lượng x không + Dạng 2.Tính giá trị của hàm số tại giá trị của một biến cho trước + Dạng 3. Tìm tọa độ một điểm và vẽ một điểm đã biết tọa độ, tìm các điểm trên một đồ thị hàm số, biểu diễn các điểm lên hình và tính diện tích + Dạng 4. Tìm hệ số a của đồ thị hàm số y = ax + b khi biết một điểm đi qua + Dạng 5. Kiểm tra một điểm có thuộc đồ thị hàm số hay không + Dạng 6. Cách lấy 1 điểm thuộc đồ thị và vẽ đồ thị hàm số y = ax, y = ax + b, đồ thị hàm trị tuyệt đối + Dạng 7. Tìm giao điểm của 2 đồ thị y = f(x) và y = g(x). Chứng minh và tìm điều kiện để 3 đường thẳng đồng quy + Dạng 8. Chứng minh 3 điểm thẳng hàng + Dạng 9. Cho bảng số liệu, hỏi hàm số xác định bởi công thức nào, hàm số là đồng biến hay nghịch biến + Dạng 10. Tìm điều kiện để hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc CHUYÊN ĐỀ VIII . THỐNG KÊ + Dạng 1. Khai thác thông tin từ bảng thống kê + Dạng 2. Lập bảng tần số và rút ra nhận xét + Dạng 3. Dựng biểu đồ đoạn thẳng hoặc biểu đồ hình chữ nhật + Dạng 4. Vẽ biểu đồ hình quạt + Dạng 5. Tính số trung bình cộng, tìm Mốt của dấu hiệu CHUYÊN ĐỀ IX . BIỂU THỨC ĐẠI SỐ + Dạng 1. Đọc và viết biểu thức đại số theo yêu cầu bài toán + Dạng 2. Tính giá trị biểu thức đại số + Dạng 3. Tìm GTLN, GTNN + Dạng 4. Bài tập đơn thức + Dạng 5. Bài tập đa thức + Dạng 6. Đa thức một biến + Dạng 7. Tìm nghiệm của đa thức 1 biến + Dạng 8. Tìm hệ số chưa biết trong đa thức P(x) biết P(x0) = a B. PHẦN HÌNH HỌC CHUYÊN ĐỀ I . ĐƯỜNG THẲNG VUÔNG GÓC VÀ ĐƯỜNG THẲNG SONG SONG. GÓC ĐỐI ĐỈNH CHUYÊN ĐỀ II . TAM GIÁC. TỔNG BA GÓC CỦA MỘT TAM GIÁC CHUYÊN ĐỀ III . QUAN HỆ GIỮA CÁC YẾU TỐ CỦA TAM GIÁC. CÁC ĐƯỜNG ĐỒNG QUY TRONG TAM GIÁC

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn Toán
Nội dung Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn ToánPhần I. Tóm tắt lí thuyếtPhần II. Các dạng bàiPhần III. Bài tập tự luyện Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác lớp 7 môn Toán Để hiểu rõ về chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác trong chương trình môn Toán lớp 7, bạn cần nắm vững các kiến thức sau. Phần I. Tóm tắt lí thuyết Phần này cung cấp tóm tắt về cách viết kí hiệu về sự bằng nhau của hai tam giác và cách suy ra các cạnh và góc bằng nhau từ kí hiệu tam giác bằng nhau. Phần II. Các dạng bài - Dạng 1: Bài tập lí thuyết giúp bạn viết kí hiệu tam giác bằng nhau và suy ra các cạnh và góc bằng nhau. - Dạng 2: Tính số đo góc, độ dài cạnh của tam giác khi biết hai tam giác bằng nhau và một số điều kiện. - Dạng 3: Chứng minh hai tam giác bằng nhau theo trường hợp bằng nhau thứ nhất và các bài toán liên quan. Phần III. Bài tập tự luyện Phần này cung cấp các bài tập tự luyện để giúp bạn rèn luyện kỹ năng giải các bài toán liên quan đến hai tam giác bằng nhau. Hãy nắm vững các kiến thức về tia phân giác, đường cao của tam giác, đường trung trực của đoạn thẳng để giải các bài toán một cách chính xác.
Chuyên đề tổng các góc trong một tam giác lớp 7 môn Toán
Nội dung Chuyên đề tổng các góc trong một tam giác lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tổng các góc trong một tam giác lớp 7 môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIPHẦN III: BÀI TẬP TỰ LUYỆN Chuyên đề tổng các góc trong một tam giác lớp 7 môn Toán Tài liệu này bao gồm 22 trang, cung cấp tóm tắt về lí thuyết và hướng dẫn giải các dạng bài tập liên quan đến việc tính toán các góc trong một tam giác trong chương trình môn Toán lớp 7. PHẦN I: TÓM TẮT LÍ THUYẾT Phần này cung cấp các kiến thức cơ bản về tính chất của các góc trong tam giác, bao gồm: Tính số đo góc của một tam giác và lập các đẳng thức liên quan Tính chất của góc trong tam giác vuông Tính chất của góc ngoài trong tam giác PHẦN II: CÁC DẠNG BÀI Phần này tập trung vào việc giải các dạng bài tập thường gặp liên quan đến tổng các góc trong tam giác, bao gồm: Dạng 1: Tính số đo góc của một tam giác thông qua việc lập các đẳng thức và tính toán Dạng 2: Bài toán chứng minh sử dụng các tính chất đã học trước đó PHẦN III: BÀI TẬP TỰ LUYỆN Phần này cung cấp các bài tập tự luyện để học sinh có thể rèn luyện và kiểm tra kiến thức của mình sau khi học xong chuyên đề này. Đây là tài liệu hữu ích giúp học sinh lớp 7 nắm vững và hiểu sâu về các kiến thức liên quan đến góc trong tam giác.
Chuyên đề định lí và chứng minh định lí lớp 7 môn Toán
Nội dung Chuyên đề định lí và chứng minh định lí lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên Đề Định Lí và Chứng Minh Định Lí Lớp 7 Môn ToánPHẦN I: TÓM TẮT LÍ THUYẾTPHẦN II: CÁC DẠNG BÀIPHẦN III: BÀI TẬP TỰ LUYỆN Chuyên Đề Định Lí và Chứng Minh Định Lí Lớp 7 Môn Toán Tài liệu này bao gồm 19 trang, tóm tắt về lí thuyết và hướng dẫn cách giải các dạng bài tập trong chuyên đề định lí và chứng minh định lí trong chương trình môn Toán lớp 7. PHẦN I: TÓM TẮT LÍ THUYẾT 1. Định lí: Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết, thường được phát biểu dưới dạng "Nếu... thì...". Giả thiết của định lí là phần giữa từ "nếu" và từ "thì", kết luận là phần sau từ "thì". 2. Chứng minh định lí: Chứng minh một định lí là dùng lập luận từ giả thiết và các khẳng định đúng để suy ra kết luận của định lí. PHẦN II: CÁC DẠNG BÀI Dạng 1: Xác định giả thiết và kết luận của định lí. Mỗi định lí được phát biểu dưới dạng "Nếu... thì...". Giả thiết là phần giữa từ "nếu" và từ "thì", kết luận là phần sau từ "thì". Dạng 2: Chứng minh định lí bằng cách dùng lập luận từ giả thiết và các khẳng định đúng đã biết để suy ra kết luận của định lí. PHẦN III: BÀI TẬP TỰ LUYỆN Phần này chứa các bài tập tự luyện để học sinh ôn tập và rèn luyện kỹ năng trong chuyên đề định lí và chứng minh định lí.Đọc kỹ lý thuyết, làm các bài tập và kiểm tra lại đáp số sẽ giúp học sinh hiểu và áp dụng chính xác kiến thức.
Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song lớp 7 môn Toán
Nội dung Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Chuyên đề tiên đề Euclid, tính chất của hai đường thẳng song song Chuyên đề này bao gồm 40 trang với tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập về tính chất của hai đường thẳng song song trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Nơi tóm tắt những kiến thức cơ bản về tính chất của hai đường thẳng song song. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Tính số đo góc. Đây là phần bài tập giúp học sinh áp dụng tính chất hai đường thẳng song song để tính số đo của các góc. Dạng 2: Chứng minh hai đường thẳng song song, vuông góc. Bao gồm các phương pháp chứng minh hai đường thẳng song song và hai đường thẳng vuông góc dựa trên các dấu hiệu nhận biết và tiên đề Euclid. PHẦN III. BÀI TẬP TƯƠNG TỰ LUYỆN: Phần này cung cấp các bài tập giúp học sinh ôn tập và luyện tập các kiến thức về tính chất của hai đường thẳng song song. Bằng cách tham gia vào chuyên đề này, học sinh sẽ có cơ hội hiểu rõ hơn về tính chất của hai đường thẳng song song và cách áp dụng chúng vào việc giải các bài tập.