Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát năng lực Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát năng lực môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề khảo sát năng lực Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Giá bán ban đầu của một bó hoa hướng dương là 60000 đồng. Vào dịp khuyến mãi, giá mỗi bó hoa hướng dương được giảm 20% và nếu khách hàng mua 10 bó trở lên thì từ bó thứ 10 trở đi khách hàng sẽ chỉ phải trả một nửa giá đang bán (giá đã giảm 20%). Một khách hàng mua hoa hướng dương vào dịp khuyến mãi đã trả 648000 đồng. Hỏi khách hàng này đã mua bao nhiêu bó hoa hướng dương? + Bố bạn Bình cần sơn phủ tường và trần mặt trong căn phòng có dạng hình hộp chữ nhật dài 17m; rộng 4m và cao 3m (không sơn cửa, tổng diện tích cửa là 6,4m2). Bạn Bình đi mua giúp bố cây lăn sơn tường. Một cây lăn sơn tường có dạng hình trụ với đường kính đáy là 5cm và chiều cao là 23cm (hình vẽ bên). Nhà sản xuất cho biết sau khi lăn 1000 vòng thì cây sơn tường phải được thay cây mới. Hỏi bạn Bình cần mua ít nhất mấy cây lăn sơn tường như thế? Biết diện tích xung quanh hình trụ được cho bởi công thức: Sxq = 2piRh, trong đó pi = 3,14; R và h lần lượt là bán kính đáy và chiều cao hình trụ. + Một bài kiểm tra trắc nghiệm khách quan gồm 20 câu hỏi với cách thức tính điểm như sau: Mỗi câu trả lời đúng được cộng 5 điểm, mỗi câu trả lời sai bị trừ 2 điểm và mỗi câu không trả lời được 0 điểm. Có 3 bạn Bình, An và Tùng đã tham gia làm bài kiểm tra này. a) Bình trả lời toàn bộ các câu hỏi trong bài kiểm tra và đúng 13 câu. An không trả lời 4 câu và chỉ đúng 12 câu. Hỏi trong hai bạn này, ai đạt điểm cao hơn? Vì sao? b) Kết thúc bài kiểm tra, Tùng đạt được 69 điểm. Hỏi Tùng đã trả lời đúng bao nhiêu câu?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 3 năm 2022 - 2023 trường THCS Tây Mỗ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 3 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 01 tháng 12 năm 2022. Trích dẫn Đề khảo sát Toán 9 lần 3 năm 2022 – 2023 trường THCS Tây Mỗ – Hà Nội: + Cho hàm số bậc nhất y = (3 − m)x + m − 1 với m là tham số và m khác 3. a) Tìm m để hàm số trên là hàm số đồng biến. b) Vẽ đồ thị hàm số tại m = 5. c) Tính khoảng cách từ gốc toạ độ đến đồ thị vừa vẽ ở câu b, đơn vị trên các trục là xentimet. + Đài quan sát ở Toronto, Ontario, Canada cao 533m. Ở một thời điểm trong ngày, mặt trời chiếu tạo thành bóng dài 1100m. Hỏi lúc đó góc tạo bởi tia sáng mặt trời và mặt đất là bao nhiêu ? (kết quả làm tròn đến phút). + Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K lần lượt là trung điểm của BC, AH. a) Chứng minh bốn điểm B, C, E, F cùng thuộc một đường tròn. b) Chứng minh: AB.AF = AC.AE c) Gọi là trung điểm của BC. Vẽ đường tròn đường kính AH. Chứng minh IE là tiếp tuyến của đường tròn đường kính AH. d) Tìm điều kiện của tam giác ABC để IE = EF.
Đề kiểm tra Toán 9 tháng 11 năm 2022 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 11 năm học 2022 – 2023 trường THCS Nguyễn Trường Tộ, quận Đống Đa, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 11 năm 2022 trường THCS Nguyễn Trường Tộ – Hà Nội : + Để lên sân thượng của một ngôi nhà 1 tầng cao 3,8m người ta dùng một chiếc thang dài 4m được đặt như hình vẽ. Hỏi cách đặt thang như vậy đã đảm bảo an toàn chưa? Biết thang ở vị trí an toàn cho người dùng khi thang tạo với mặt đất một góc có độ lớn từ 60° đến 75°. + Cho đường thẳng (d): y = −x − 2 và đường thẳng (d): y = −2x + 2 1) Vẽ hai đường thẳng (d) và (d’) trên cùng một mặt phẳng tọa độ. 2) Khi (d) cắt (d’) tại M. Tìm tọa độ điểm M. 3) Gọi A, B lần lượt là giao điểm của (d), (d’) với trục Ox. Tính diện tích tam giác ABM. + Cho tam giác ABC có 3 góc nhọn (AB > BC) và đường cao BE. Gọi H và K lần lượt là hình chiếu vuông góc kẻ từ E đến các đường thẳng AB và BC. 1) Chứng minh 4 điểm B, H, E, K cùng thuộc một đường tròn. 2) Chứng minh HK.BA = BK.CA. 3) Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AB và I là trung điểm của EF. Chứng minh H, I, K thẳng hàng.
Đề khảo sát Toán 9 tháng 10 năm 2022 trường THCS Kỳ Bá - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 giai đoạn tháng 10 năm học 2022 – 2023 trường THCS Kỳ Bá, tỉnh Thái Bình. Trích dẫn Đề khảo sát Toán 9 tháng 10 năm 2022 trường THCS Kỳ Bá – Thái Bình : + Tìm x để biểu thức sau có nghĩa 1/(x – 2). + Không dùng máy tính bỏ túi hãy so sánh: 2 và 3 – 5. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH của tam giác. a) Biết BH = 2cm, BC = 8cm. Tính AH và BAH. b) Lấy điểm K nằm giữa A và C. Gọi D là hình chiếu của A trên BK. Chứng minh tam giác BHD đồng dạng tam giác BKC. c) Gọi E là giao điểm của AD và BC, F là giao điểm của AH và BK. Chứng minh: AB = BK.sinDFE. d) Chứng minh AH.DB = HD.AB + AD.BH.
Đề kiểm tra đầu năm Toán 9 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Dịch Vọng, thành phố Hà Nội. Trích dẫn Đề kiểm tra đầu năm Toán 9 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ công nhân được giao làm một số sản phẩm và dự định sản xuất 50 sản phẩm mỗi ngày. Trên thực tế có một số công nhân phải nghỉ việc do mắc Covid – 19 nên mỗi ngày tổ công nhân sản xuất được ít hơn 10 sản phẩm so với kế hoạch đề ra, do đó hoàn thành công việc chậm 1 ngày. Hỏi tổ công nhân đó được giao làm bao nhiêu sản phẩm? + Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. a) Chứng minh tam giác ABC đồng dạng tam giác HBA. b) Cho AB = 3cm, BH = 1,8cm. Tính độ dài BC và AC. c) Điểm M di chuyển trên cạnh AC. Vẽ AD vuông góc BM tại D. Chứng minh BD.BM = BH.BC. d) Tìm vị trí điểm M trên cạnh AC để HD // AB. + Cho các số thực dương x và y thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức P = x2y2(x2 + y2).