Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán tuyển sinh 10 năm 2024 2025 trường THCS Trần Phú Bắc Giang

Nội dung Đề thi thử Toán tuyển sinh 10 năm 2024 2025 trường THCS Trần Phú Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú Bắc Giang Đề thi thử Toán tuyển sinh 10 năm 2024 - 2025 trường THCS Trần Phú Bắc Giang Chúng ta sẽ cùng khám phá đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 của trường THCS Trần Phú, thành phố Bắc Giang, tỉnh Bắc Giang. Kỳ thi sẽ diễn ra vào ngày 20 tháng 02 năm 2024 đầy hấp dẫn. 1. Bài toán thứ nhất đưa ra vấn đề về việc tăng diện tích sân bóng hình chữ nhật của trường. Học sinh sẽ được thách thức khi phải tính toán để tìm ra kích thước ban đầu của sân bóng. 2. Bài toán thứ hai liên quan đến tòa chung cư cao tầng ở TP Bắc Giang và việc xác định số tầng của tòa nhà dựa trên thông tin về chiều cao của cột đèn và chiều cao của mỗi tầng. 3. Bài toán cuối cùng về việc tính vận tốc của người đi bộ tập thể dục trên đoạn đường ven sông Thương là một thử thách thú vị với những thông tin về khoảng cách và vận tốc của người đó. Bằng cách thử sức với những bài toán thú vị cùng với đề thi thử Toán, các em học sinh sẽ cải thiện kỹ năng giải quyết vấn đề và chuẩn bị tốt nhất cho kỳ thi tuyển sinh sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2018 - 2019 sở GD và ĐT Tiền Giang
Đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở GD và ĐT Tiền Giang gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi diễn ra vào ngày 05/06/2018, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2018 – 2019 sở Tiền Giang : + Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. [ads] + Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. + Cho phương trình x^2 – 2x – 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.
Đề tuyển sinh vào lớp 10 THPT 2018 - 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên)
Đề tuyển sinh vào lớp 10 THPT 2018 – 2019 môn Toán sở GD và ĐT Tây Ninh (không chuyên) gồm 1 trang với 10 bài toán tự luận, thí sinh làm bài trong 120 phút (không tính thời gian phát đề), kỳ thi được tổ chức vào ngày 01 tháng 06 năm 2018, đề thi có lời giải chi tiết .
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chuyên)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề dành cho thí sinh chuyên Toán, Tin) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thời gian làm bài 150 phút, kết quả của bài thi này là cơ sở để tuyển chọn các em có năng khiếu môn Toán và Tin học vào các lớp chuyên để bồi dưỡng, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở Thái Bình (đề chuyên) : + Cho nửa đường tròn đường kính AB = 2R. Tìm kích thước hình chữ nhật MNPQ có hai đỉnh M, N thuộc nửa đường tròn, hai đỉnh P, Q thuộc đường kính AB sao cho diện tích MNPQ lớn nhất. [ads] + Hai cây nến cùng chiều dài và làm bằng các chất liệu khác nhau, cây nến thứ nhất cháy hết với tốc độ đều trong 3 giờ, cây nến thứ hai cháy hết với tốc độ đều trong 4 giờ. Hỏi phải cùng bắt đầu đốt lúc mấy giờ chiều để đến 4 giờ chiều, phần còn lại của cây nến thứ hai dài gấp đôi phần còn lại của cây nến thứ nhất? + Cho tam giác ABC có AB = 4, AC = 3, BC = 5, đường cao AH. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ hai nửa đường tròn đường kính BH và HC. Hai nửa đường tròn này cắt AB, AC lần lượt tại E, F. a) Tính diện tích của nửa hình tròn đường kính BH. b) Chứng minh tứ giác BEFC nội tiếp và đường thẳng EF là tiếp tuyến chung của hai đường tròn đường kính BH và CH.
Đề tuyển sinh lớp 10 chuyên năm 2018 - 2019 môn Toán sở GD và ĐT Thái Bình (đề chung)
Đề tuyển sinh lớp 10 chuyên năm 2018 – 2019 môn Toán sở GD và ĐT Thái Bình (đề chung dành cho tất cả các thí sinh) gồm 1 trang được biên soạn theo hình thức tự luận với 6 bài toán, thí sinh làm bài trong thời gian 120 phút, kết quả của bài thi này là cơ sở để tuyển sinh vào lớp 10 các trường THPT chuyên thuộc sở GD và ĐT Thái Bình, đề thi có lời giải chi tiết . Trích dẫn đề tuyển sinh lớp 10 THPT chuyên năm 2018 – 2019 môn Toán sở Thái Bình : + Cho đường tròn tâm O bán kính a và điểm J có JO = 2a. Các đường thẳng JM, JN theo thứ tự là các tiếp tuyến tại M, tại N của đường tròn (O). Gọi K là trực tâm của tam giác JMN, H là giao điểm của MN với JO. a) Chứng minh rằng: H là trung điểm của OK. b) Chứng minh rằng: K thuộc đường tròn tâm O bán kính a. [ads] c) JO là tiếp tuyến của đường tròn tâm M bán kính r. Tính r. d) Tìm tập hợp điểm I sao cho từ điểm I kẻ được hai tiếp tuyến với đường tròn (O) và hai tiếp tuyến đó vuông góc với nhau. + Cho hai đường thẳng (d1): y = (-1/m)x + 1/m (với m là tham số, m khác 0). Gọi I(x0; y0) là tọa độ giao điểm của hai đường thẳng (d1) với (d2). Tính x0^2 + y0^2.