Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT 2021 môn Toán lần 2 trường THPT Thị xã Quảng Trị

Sáng Chủ Nhật ngày 20 tháng 06 năm 2021, trường THPT Thị xã Quảng Trị, tỉnh Quảng Trị tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021 lần thứ hai. Đề thi thử tốt nghiệp THPT 2021 môn Toán lần 2 trường THPT Thị xã Quảng Trị mã đề 104 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 102, 103, 104. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán lần 2 trường THPT Thị xã Quảng Trị : + Trong không gian Oxyz, cho điểm I 1 2 3 và đường thẳng 1 1 1 2 x y z. Gọi S là mặt cầu tâm I và cắt đường thẳng tại hai điểm A B phân biệt sao cho diện tích tam giác IAB bằng 4 11. Gọi là mặt phẳng đi qua hai điểm E(0;0;-4), F(2;0;0) và cắt (S) theo giao tuyến là đường tròn C. Xét các khối nón có đỉnh là tâm I của S và đáy là C. Biết rằng khi thể tích của khối nón lớn nhất thì mặt phẳng có phương trình dạng ax by z d 0. Tính 2 2 2 P a b d. + Ông An sử dụng một vật thể chất liệu thủy tinh rỗng ruột có hình dạng gồm hai khối 1 4 hình trụ có bán kính bằng 10cm, chiều cao 50cm ghép lại. Vật thể này được ngăn thành ba phần riêng biệt H1, H2, H3 (như hình vẽ), mỗi phần có nút riêng để đổ nước vào. Phần giao nhau của hai khối (phần H2) ông An đổ đầy dung dịch màu đỏ, phần còn lại (phần 1 3 H H) ông đổ đầy dung dịch màu xanh. Biết rằng, mỗi lít dung dịch màu đỏ chi phí 200.000 đồng, mỗi lít dung dịch màu xanh chi phí 100.000 đồng. Giả thiết rằng, độ dày của thành thủy tinh là không đáng kể. Hỏi số tiền ông An đã bỏ ra gần với kết quả nào sau đây. + Xếp ngẫu nhiên 6 viên bi gồm 3 viên bi đỏ, 2 viên bi vàng, 1 viên bi trắng vào một khay đựng gồm 6 ngăn sắp thành một hàng ngang sao cho mỗi ngăn có đúng một viên bi. Tính xác suất để viên bi trắng chỉ xếp cạnh viên bi vàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp Trung học Phổ thông năm 2023 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2023. Trích dẫn đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho đường thẳng 2 1 2 4 4 3 x y z d và mặt phẳng P x y z 2 2 1 0. Đường thẳng đi qua E 2 1 2 song song với P đồng thời tạo với d góc bé nhất. Biết rằng có một vector chỉ phương u m n 1. Tính 2 2 T m n. + Cho khối nón đỉnh S và tâm của đường tròn đáy là O. Gọi M N là hai điểm thuộc đường đáy sao cho 4 tan 60 3 SMO MSN và khoảng cách từ O đến mặt phẳng SMN bằng 22 5. Thể tích của khối nón đã cho bằng? + Cho hình lăng trụ ABCD A B C D có các mặt bên đều là hình vuông. Gọi M N lần lượt là trung điểm của các cạnh BC A C. Biết khoảng cách giữa hai đường thằng MN và AB’ bằng 3 2 a. Thể tích khối chóp A ABC bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GDĐT Hòa Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Hòa Bình (mã đề 103); kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 1 sở GD&ĐT Hòa Bình : + Một đồ chơi (N) hình khối nón đặc có bán kính r1 và chiều cao h. Một hình trụ có bán kính r2 = 3r1 đang chứa nước có chiều cao mực nước là 26. Khi đặt khối nón (N) lên đáy của hình trụ (các đáy của chúng nằm cùng trên một mặt phẳng) thì mực nước dâng lên cao bằng đỉnh nón. Chiều cao khối nón là? + Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD cạnh AB = 2a, BC = a, SA vuông góc với mặt đáy và cạnh SC tạo với mặt phẳng (ABCD) một góc a có tan a. Gọi E, F lần lượt là các điểm nằm trên cạnh SB, SD sao cho SB = 2SE, SD = 3SF. Thể tích V của khối tứ diện AEFC là? + Cho hai hàm số f(x) = ax4 + bx3 + cx2 + 3x và g(x) = mx3 + nx2 – x với a, b, c, m, n thuộc R. Biết hàm số y = f(x) – g(x) có ba điểm cực trị là −1; 1 và 2. Diện tích hình phẳng giới hạn bởi hai đường y = f'(x) và y = g'(x) bằng?
Đề thi thử TN THPT 2023 lần 3 môn Toán trường THPT Yên Lạc 2 - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 lần 3 môn Toán trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104 105 106. Trích dẫn Đề thi thử TN THPT 2023 lần 3 môn Toán trường THPT Yên Lạc 2 – Vĩnh Phúc : + Khối tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi đường cong 5 4 1 x x x e y xe, trục hoành và hai đường thẳng x = 0, x = 1 quanh trục hoành có thể tích V ab e π ln 1 trong đó a, b là các số nguyên. Mệnh đề nào dưới đây đúng? + Cho hai số thực x, y thỏa mãn: 2 2 x y 3 và 2 2 log 4 3 4 3 2 x y xx x y y. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức Pxy. Khi đó biểu thức T Mm 2 có giá trị gần nhất số nào sau đây? + Cho khối chóp S ABCD có đáy là hình bình hành AB = 3, AD = 4, 120 o BAD. Cạnh bên SA 2 3 vuông góc với mặt phẳng đáy (ABCD). Gọi MNP lần lượt là trung điểm các cạnh SA SD và BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây?
Đề thi thử TN THPT 2023 lần 1 môn Toán trường THPT Trần Hưng Đạo - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2022 – 2023 lần 1 môn Toán trường THPT Trần Hưng Đạo, tỉnh Nam Định; đề thi mã đề 001 gồm 06 trang, hình thức trắc nghiệm với 50 câu, thời gian làm bài 90 phút, không kể thời gian giao đề. Trích dẫn Đề thi thử TN THPT 2023 lần 1 môn Toán trường THPT Trần Hưng Đạo – Nam Định : + Trong không gian Oxyz, cho đường thẳng 1 2 1 1 1 1 x y z d và mặt cầu 2 2 2 S x y z x y z 2 4 6 13 0. Lấy điểm M a b c với a 0 thuộc đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu S (A B C là tiếp điểm) thỏa mãn AMB 60 BMC 90 CMA 120. Tổng abc bằng? + Cho hình nón N có đỉnh S, chiều cao h 3. Mặt phẳng P qua đỉnh S cắt hình nón N theo thiết diện là tam giác đều. Khoảng cách từ tâm đáy hình nón đến mặt phẳng P bằng 6. Thể tích khối nón giới hạn bởi hình nón N bằng? + Trên tập hợp số phức, xét phương trình 2 z mz m 8 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của tham số m để phương trình có hai nghiệm 1 2 z z phân biệt thỏa mãn 2 2 1 1 2 2 z z mz m m z 8?