Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2022 2023 trường Lê Quý Đôn Thanh Hóa

Nội dung Đề thi thử Toán vào 10 lần 1 năm 2022 2023 trường Lê Quý Đôn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 lần 1 năm 2022-2023 trường Lê Quý Đôn Thanh Hóa Đề thi thử Toán vào 10 lần 1 năm 2022-2023 trường Lê Quý Đôn Thanh Hóa Sytu xin gửi đến quý thầy cô giáo và các bạn học sinh lớp 9 đề thi thử môn Toán lớp 9 để ôn thi vào lớp 10 lần 1 trong năm học 2022-2023 tại trường THCS Lê Quý Đôn, thị xã Bỉm Sơn, tỉnh Thanh Hóa. Đề thi này bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Đề thi thử Toán vào 10 lần 1 năm 2022-2023 trường Lê Quý Đôn Thanh Hóa bao gồm các bài toán thú vị như: Phương trình: Tìm giá trị của m để phương trình có hai nghiệm phân biệt và dương. Đường tròn: Chứng minh các tính chất của tứ giác OKNC nội tiếp, tích DN.DK = DC.DO = 2R^2, tìm vị trí của điểm K để đạt giá trị nhỏ nhất. Các số thực dương: Cùng chứng minh một phương trình có số thực dương a, b, c. Qua đề thi này, học sinh sẽ có cơ hội rèn luyện kỹ năng giải các bài toán toán học, nâng cao kiến thức và chuẩn bị tốt cho kỳ thi vào lớp 10. Chúc các em học sinh thành công trong việc ôn tập và thi cử!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A ,đường cao AH .Gọi (P) và (Q) theo thứ tự là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) nó cắt AB, AH, AC theo thứ tự ở M, K, N [ads] 1. Chứng minh tam giác HPQ đồng dạng với tam giác ABC 2. Chứng minh PK song song với AB và tứ giác BMNC nội tiếp 3. Chứng minh năm điểm A, M, P, Q, N cùng nằm trên một đường tròn 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Tính giá trị lớn nhất của diện tích tam giác IDE theo a
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cần Thơ
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cần Thơ gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Để chuẩn bị tham gia hội khỏe phù đổng cấp trường, thầy Thành là giáo viên chủ nhiệm lớp 9A tổ chức cho học sinh trong lớp thi đấu môn bóng bàn ở nội dung đánh đôi nam nữ (một nam kết hợp một nữ). Thầy Thành chọn 1/2 số học sinh nam kết hợp với 5/8 số học sinh nữ của lớp để lập thành các cặp thi đấu. Sau khi đã chọn được số học sinh tham gia thi đấu thì lớp 9A còn lại 16 học sinh làm cổ động viên. Hỏi lớp 9A có tất cả bao nhiêu học sinh? [ads] + Cho tam giác ABC có ba góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB AC , lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng CD và BE a) Chứng minh tứ giác ADHE nội tiếp trong một đường tròn. Xác định tâm I của đường tròn này b) Gọi M là giao điểm của AH và BC. Chứng minh CM.CB = CE.CA c) Chứng minh ID là tiếp tuyến của đường tròn (O) d) Tính theo R diện tích của tam giác ABC, biết góc ABC = 45 độ, góc ACB = 60 độ và BC = 2R