Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề vectơ trong không gian, quan hệ vuông góc - Nguyễn Chín Em

Tài liệu gồm 671 trang được biên soạn bởi thầy Nguyễn Chín Em tóm tắt lý thuyết, phân dạng và hướng dẫn giải các bài toán thuộc các chủ đề: vectơ trông không gian, hai đường thẳng vuông góc, đường thẳng vuông góc với mặt phẳng, hai mặt phẳng vuông góc, khoảng cách … trong chương trình Hình học 11 chương 3: vectơ trong không gian, quan hệ vuông góc. Khái quát nội dung tài liệu chuyên đề vectơ trong không gian, quan hệ vuông góc – Nguyễn Chín Em: CHỦ ĐỀ 1 . VEC-TƠ TRONG KHÔNG GIAN A TÓM TẮT LÝ THUYẾT 1 Các định nghĩa. 2 Các quy tắc tính toán với véc-tơ. 3 Một số hệ thức véc-tơ trọng tâm cần nhớ. 4 Điều kiện đồng phẳng của ba véc-tơ. 5 Phân tích một véc-tơ theo ba véc-tơ không đồng phẳng. 6 Tích vô hướng của hai véc-tơ. B CÁC DẠNG TOÁN Dạng 1. Xác định véc-tơ và các khái niệm có liên quan. Dạng 2. Chứng minh đẳng thức véc-tơ. Dạng 3. Tìm điểm thỏa mãn đẳng thức véc-tơ. Dạng 4. Tích vô hướng của hai véc-tơ. Dạng 5. Chứng minh ba véc-tơ đồng phẳng. Dạng 6. Phân tích một véc-tơ theo 3 véc-tơ không đồng phẳng cho trước. Dạng 7. Ứng dụng véc-tơ chứng minh bài toán hình học. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC A TÓM TẮT LÝ LÝ THUYẾT 1 Tích vô hướng của hai véc-tơ trong không gian. 2 Góc giữa hai đường thẳng. B CÁC DẠNG TOÁN Dạng 1. Xác định góc giữa hai véc-tơ. Dạng 2. Xác định góc giữa hai đường thẳng trong không gian. Dạng 3. Sử dụng tính chất vuông góc trong mặt phẳng. Dạng 4. Hai đường thẳng song song cùng vuông góc với một đường thẳng thứ ba. C CÂU HỎI TRẮC NGHIỆM [ads] CHỦ ĐỀ 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG A TÓM TẮT LÝ THUYẾT 1 Định nghĩa. 2 Điều kiện để đường thẳng vuông góc với mặt phẳng. 3 Tính chất. 4 Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng. 5 Phép chiếu vuông góc và định lý ba đường vuông góc. B CÁC DẠNG TOÁN Dạng 1. Đường thẳng vuông góc với mặt phẳng. Dạng 2. Góc giữa đường thẳng và mặt phẳng. Dạng 3. Xác định thiết diện của một khối đa diện cắt bởi mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 4 . HAI MẶT PHẲNG VUÔNG GÓC A TÓM TẮT LÝ THUYẾT 1 Định nghĩa góc giữa hai mặt phẳng. 2 Cách xác định góc của hai mặt phẳng cắt nhau. 3 Diện tích hình chiếu của một đa giác. 4 Hai mặt phẳng vuông góc. 5 Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương. 6 Hình chóp đều và hình chóp cụt đều. B CÁC DẠNG TOÁN Dạng 1. Tìm góc giữa hai mặt phẳng. Dạng 2. Tính diện tích hình chiếu của đa giác. Dạng 3. Chứng minh hai mặt phẳng vuông góc. Dạng 4. Thiết diện chứa một đường thẳng và vuông góc với một mặt phẳng. C CÂU HỎI TRẮC NGHIỆM CHỦ ĐỀ 5 . KHOẢNG CÁCH A TÓM TẮT LÝ THUYẾT 1 Khoảng cách từ một điểm đến một đường thẳng. 2 Khoảng cách từ một điểm tới một mặt phẳng. 3 Khoảng cách từ một đường thẳng tới một mặt phẳng song song. 4 Khoảng cách giữa hai mặt phẳng song song. 5 Đường thẳng vuông góc chung và khoảng cách giữa hai đường thẳng chéo nhau. B CÁC DẠNG TOÁN Dạng 1. Khoảng cách từ một điểm tới một đường thẳng. Dạng 2. Khoảng cách từ một điểm đến một mặt phẳng. Dạng 3. Khoảng cách giữa đường và mặt song song – Khoảng cách giữa hai mặt song song. Dạng 4. Đoạn vuông góc chung – Khoảng cách giữa hai đường thẳng chéo nhau. C CÂU HỎI TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Tài liệu chủ đề hai đường thẳng vuông góc
Tài liệu gồm 25 trang, bao gồm kiến thức trọng tâm, hệ thống ví dụ minh họa và bài tập trắc nghiệm tự luyện chủ đề hai đường thẳng vuông góc, có đáp án và lời giải chi tiết; giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3. I. KIẾN THỨC TRỌNG TÂM 1) Tích vô hướng của hai vectơ trong không gian. 2) Góc giữa hai đường thẳng trong không gian. 3) Hai đường thẳng vuông góc. II. HỆ THỐNG VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. ĐÁP ÁN VÀ LỜI GIẢI BẢI TẬP TỰ LUYỆN.
Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập góc và khoảng cách vận dụng cao
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề góc và khoảng cách vận dụng cao (VDC) lớp 11 THPT. Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 1). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 2). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 3). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 4). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 5). Vận dụng cao góc nhị diện – (phần 1). Vận dụng cao góc nhị diện – (phần 2). Vận dụng cao góc nhị diện – (phần 3). Vận dụng cao góc nhị diện – (phần 4). Vận dụng cao góc nhị diện – (phần 5). Vận dụng cao góc nhị diện – (phần 6). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 1). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 2). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 3). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 4). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 5). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 1). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 2). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 3). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 4). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 5). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 7). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 8). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 9). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 10). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 11). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 12). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 13). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 14).