Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Mạc Đĩnh Chi Hải Phòng

Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Mạc Đĩnh Chi Hải Phòng Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Mạc Đĩnh Chi, thành phố Hải Phòng; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104. Trích dẫn Đề cuối kì 1 Toán lớp 11 năm 2023 – 2024 trường THPT Mạc Đĩnh Chi – Hải Phòng : + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng một bức tranh là dãy các tam giác 111 2 2 2 33 3 ABC ABC ABC sao cho ABC 111 là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác ABC nnn là tam giác trung bình của tam giác ABC nnn 111. Với mỗi số nguyên dương n, kí hiệu n S tương ứng là diện tích hình tròn ngoại tiếp tam giác ABC nnn. Tính tổng 1 2 n SS. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AB, đáy nhỏ CD. Gọi M là một điểm trên cạnh CD (α) là mặt phẳng qua M và song song với SA và BC. a) Chứng minh CD SAB. b) Tìm giao tuyến của hai mặt phẳng (α) và SAD. + Cho hình chóp S.ABCD có đáy là hình bình hành. M N lần lượt thuộc đoạn AB SC. Khẳng định nào sau đây đúng? A. Giao điểm của MN và (SBD) là giao điểm của MN và SI, trong đó I là giao điểm của CM và BD. B. Giao điểm của MN và (SBD) là giao điểm của MN và BD. C. Đường thẳng MN không cắt mặt phẳng (SBD). D. Giao điểm của MN và (SBD) là giao điểm của MN và SB. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.