Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 08 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh : + Cho đa thức 2 f x ax bx c với abc là các số hữu tỉ. Biết rằng f f f (0) (1) (2) có giá trị nguyên. Chứng minh rằng 2 2 a b có giá trị nguyên. + Cho a, b là hai số nguyên phân biệt lớn hơn 1 thỏa mãn 2 a b 2 2 là lũy thừa của một số nguyên tố khác 13 và 2 b a 2 2 chia hết cho 2 a b 2 2. Chứng minh 2 3 a là số chính phương. + Cho tam giác ABC có B 2C; trên tia đối của tia BA lấy điểm D sao cho BD = BC. Qua A kẻ đường thẳng vuông góc với CD cắt BC và CD lần lượt tại M và N. Đường vuông góc với BC tại C cắt AM tại K. Chứng minh rằng: a) ∆ABM là tam giác cân và ABC 2AKC b) MA.KN = MN.KA; c) Tính độ dài ba cạnh của tam giác ABC biết độ dài ba cạnh là ba số tự nhiên liên tiếp.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.