Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh năng khiếu Toán 8 năm 2023 - 2024 phòng GDĐT Tam Nông - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh năng khiếu môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tam Nông, tỉnh Phú Thọ; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề học sinh năng khiếu Toán 8 năm 2023 – 2024 phòng GD&ĐT Tam Nông – Phú Thọ : + Để lập một đội tuyển năng khiếu về bóng chuyền của một trường. Thầy thể dục đưa ra quy định: Mỗi bạn dự tuyển phải phát bóng đủ 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu bị trừ 2 điểm. Bạn nào có số điểm từ 20 điểm trở lên sẽ được chọn vào đội tuyển. Nếu muốn vào đội tuyển phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu? + Cho hình chữ nhật ABCD hai đường chéo cắt nhau tại O. P là một điểm di động trên đoạn thẳng OB (P khác O và B). M là điểm đối xứng của C qua P kẻ ME vuông góc với đường thẳng AD tại E và kẻ MF vuông góc với đường thẳng AB tại F. a) Chứng minh: MA song song với BD và AB là tia phân giác của MAC. b) Chứng minh E F P thẳng hàng. c) Chứng minh 2 EF MF không đổi khi P di động trên đoạn thẳng OB. + Gieo ngẫu nhiên một con xúc sắc ba lần liên tiếp, xác suất để số chấm ba lần gieo đều là các số chẵn là?

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2) = 10 và P(−2) = −6. Tìm đa thức P(x) biết đa thức P(x) chia cho đa thức x2 – 4 được thương là (2x + 6) và còn dư. + Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B, khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ cùng ngày và vận tốc theo thứ tự là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? + Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. a/ Tứ giác AMDB là hình gì? b/ Gọi E, F lần lượt là hình chiếu của M trên AD, AB. Chứng minh: EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh: Tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Giả sử CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16. Tính các cạnh của hình chữ nhật ABCD.
Đề HSG Toán 8 vòng 2 năm 2022 - 2023 liên trường THCS huyện Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp trường vòng 2 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An : + Tìm số tự nhiên n để n + 18 và n − 41 là hai số chính phương. Cho a là số nguyên. Chứng minh rằng 3 a a 2023 chia hết cho 6. + Cho tam giác ABC vuông tại A (AB AC) có AD là tia phân giác của BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC E là giao điểm của BN và DM F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh H là trực tâm ∆AEF. c) Gọi giao điểm của AH và DM là K, giao điểm của AH và BC là O, giao điểm của BK và AD là I. Chứng minh: 9 BI AO DM KI KO KM. + Cho đa giác đều gồm 2023 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh và đỏ. Chứng minh rằng tồn tại ba đỉnh được sơn cùng một màu tạo thành một tam giác cân.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho tam giác ABC cân tại A (góc A nhọn), đường cao AH cắt tia phân giác BD tại điểm I. Gọi M là hình chiếu của điểm H trên cạnh AC, K là trung điểm của HM. a) Chứng minh AH HM HC CM. b) Chứng minh AK vuông góc với BM. c) Biết AI = 5cm, HI = 4cm. Tính độ dài cạnh BC. + Xét hình chữ nhật kích thước 3cm x 4 cm. Chứng minh rằng với 7 điểm bất kì nằm trong hình chữ nhật, luôn có thể chọn ra hai điểm có khoảng cách nhỏ hơn 3. Cho hai số thực x, y thỏa mãn x > −1; y > 1 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 1 1 P1 1. + Cho 3 số nguyên dương 123 aaa có tổng bằng 2023 2022. Chứng minh rằng: 333 123 aaa chia hết cho 3.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 trường THCS An Trung - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 trường THCS An Trung, tỉnh Nghệ An; đề thi có đáp án và thang chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 trường THCS An Trung – Nghệ An : + Cho hình vuông ABCD trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm M, N, P, Q sao cho AM = BN = CP = DQ. a) Chứng minh MNPQ hình vuông. b) Tìm vị trí của M, N, P, Q để diện tích tứ giác MNPQ đạt giá trị nhỏ nhất. + Cho tam giác ABC (AB < AC), M là trung điểm của BC. Một đường thẳng qua M và song song với phân giác của góc BAC cắt AC, AB lần lượt tại E, F. Chứng minh CE = BF. + Tìm x, y thuộc Z thỏa mãn 2 x xy x y 3 1. Tìm x, y là các số tự nhiên lớn hơn 1 sao cho 4 1 x y và 4 1 y x. Xác định đa thức f(x) biết f(x) chia hết cho 2x – 1, chia cho x – 2 thì dư 6, chia cho 2 2 5 2 x x được thương là x + 2 và còn dư.