Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 11 môn Toán đầu năm học 2019 2020 trường Thuận Thành 1 Bắc Ninh

Nội dung Đề khảo sát lớp 11 môn Toán đầu năm học 2019 2020 trường Thuận Thành 1 Bắc Ninh Bản PDF Với mục đích kiểm tra đánh giá toàn diện lại các kiến thức Toán lớp 10 đối với học sinh lớp 11, để chuẩn bị cho chương trình Toán lớp 11 năm học 2019 – 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh đã tổ chức kỳ thi khảo sát chất lượng đầu năm học 2019 – 2020 môn Toán lớp 11. Đề khảo sát Toán lớp 11 đầu năm học 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh có mã đề 832 được biên soạn theo hình thức trắc nghiệm khách quan, đề gồm 06 trang với 50 câu hỏi và bài tập bao quát chương trình Toán lớp 10, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề khảo sát Toán lớp 11 đầu năm học 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Khi giải phương trình √(3x^2 + 1) = 2x + 1 (1), một học sinh làm theo các bước sau: Bước 1: Bình phương hai vế của phương trình (1) ta được: (3x^2 + 1) = (2x + 1)^2 (2). Bước 2: Khai triển và rút gọn (2) ta được: x^2 + 4x = 0 ⇔ x = 0 hoặc x = -4. Bước 3: Khi x = 0 ta có 3x^2 + 1 > 0. Khi x = -4 ta có 3x^2 + 1 > 0. Vậy tập nghiệm của phương trình là {0;–4}. Nhận xét đúng nhất về lời giải trên là? A. Sai ở bước 2. B. Sai ở bước 3. C. Sai ở bước 1. D. Đúng. + Ta biết rằng Mặt Trăng chuyển động quanh Trái Đất theo một quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip có chiều dài trục lớn và trục nhỏ lần lượt là 769 266 (km) và 768 106 (km). Tính khoảng cách ngắn nhất từ Trái Đất đến Mặt Trăng, biết rằng các khoảng cách đó đạt được khi Trái Đất và Mặt Trăng nằm trên trục lớn của elip, ta được kết quả là? + Cho tam giác ABC với các cạnh AB = c, AC = b, BC = a. Trong các mệnh đề sau, mệnh đề sai là? A. Với mọi điểm M trong mặt phẳng ta luôn có aMA^2 + bMB^2 + cMC^2 ≥ abc. B. Nếu I là tâm đường tròn nội tiếp tam giác ABC thì aIA + bIB + cIC = 0. C. Nếu H là trực tâm của tam giác ABC thì sinA.HA + sinB.HB + sinC.HC = 0. D. Một vectơ chỉ phương của đường phân giác trong của góc A của tam giác ABC là?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 11 năm 2020 - 2021 trường THPT Yên Mỹ - Hưng Yên
Đề khảo sát chất lượng Toán 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên mã đề 291 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên : + Khẳng định nào sai: A. Phép quay biến đường thẳng thành đường thẳng song song với nó. B. Phép tịnh tiến biến tam giác thành tam giác bằng nó. C. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho hình chóp S.ABCD có đáy ABCD không là hình thang. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SE với E là giao điểm của AD và BC. B. Đường thẳng đi qua S và song song BC. C. Đường thẳng SI với I là giao điểm của AB và CD. D. Đường thẳng SO với O là giao điểm của AC và BD. + Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10km, rồi nối từ vị trí C đến vị trí B dài 8km. Biết góc tạo bởi 2 đoạn dây AC và CB là 85 độ. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm khoảng bao nhiêu mét dây?
Đề ĐGCB học kỳ 1 Toán 11 năm 2020 - 2021 trường THPT chuyên KHTN - Hà Nội
Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán 11 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Một nhóm 10 học sinh gồm 4 học sinh lớp A, 3 học sinh lớp B và 3 học sinh lớp C. Chọn ngẫu nhiên 5 học sinh từ nhóm này. Tính xác suất xảy ra tình huống lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp A. + Cho cấp số cộng (un) với công sai là số dương. Biết rằng u1, u2, u6 lập thành một cấp số nhân và tổng của chúng là 21. Hãy tính tổng 20 số hạng đầu tiên của cấp số cộng (un). + Cho một bảng ô vuông kích thước 4 x 4, gồm 16 ô vuông con. Ta điền ngẫu nhiên vào mỗi ô vuông con một trong hai số 1 hoặc -1. Tính xác suất xảy ra tình huống tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0.
Đề sát hạch Toán 11 lần 3 năm 2019 - 2020 trường THPT Đoàn Thượng - Hải Dương
Đề sát hạch Toán 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho hàm số y = (x + 2)/(2x + 3) có đồ thị là đường cong (C). Đường thẳng có phương trình y = ax + b là tiếp tuyến của (C) cắt trục hoành tại A, cắt trục tung tại B sao cho tam giác OAB là tam giác vuông cân tại O, với O là gốc tọa độ. Khi đó tổng S = a + b bằng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng?
Đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 - 2020 trường THPT Lý Thái Tổ - Bắc Ninh
Thứ Bảy ngày 30 tháng 06 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán đối với học sinh lớp 11 lần thứ hai năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743, 896. Trích dẫn đề kiểm tra chất lượng Toán 11 lần 2 năm 2019 – 2020 trường THPT Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, với AB = 2a, AD = CD = a. Cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M là điểm thuộc cạnh AB sao cho AB = 4AM và (x) là mặt phẳng đi qua M, vuông góc với cạnh CD. Tính diện tích thiết diện của hình chóp S.ABCD với mặt phẳng (x). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, biết AB = 2a, AD = a, SA = 3a và SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD, điểm E thuộc cạnh SA sao cho SE = 2a. Cosin góc giữa hai mặt phẳng (SAC) và (BME). + Cho hàm số f(x) có đạo hàm trên R và có đồ thị như hình vẽ. Biết rằng tại các điểm A, B, C đồ thị hàm số có tiếp tuyến được thể hiện như trong hình. Chọn khẳng định đúng trong các khẳng định sau?