Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG 2018 trường THPT Diễn Châu 3 - Nghệ An lần 3

Đề thi thử Toán THPTQG 2018 trường THPT Diễn Châu 3 – Nghệ An lần 3 mã đề 101 được biên soạn nhằm kiểm tra năng lực học sinh theo định kỳ, giúp các em được cọ xát thường xuyên, tiếp xúc với các dạng toán vận dụng mới để chuẩn bị cho kỳ thi chính thức THPT Quốc gia 2018 môn Toán, đề thi có đáp án . Trích dẫn đề thi thử Toán 2018 trường Diễn Châu 3 – Nghệ An lần 3 : + Người ta dùng 18 cuốn sách bao gồm 7 cuốn sách Toán, 6 cuốn sách Lý và 5 cuốn sách Hóa (các cuốn sách cùng loại thì giống nhau) để làm phần thưởng cho 9 học sinh A, B, C, D, E, F, G, H, I mỗi học sinh nhận được 2 cuốn sách khác thể loại (không tính thứ tự các cuốn sách). Tính xác suất để hai học sinh A và B nhận được phần thưởng giống nhau. [ads] + Trong không gian Oxyz, cho mặt phẳng (P): (a + b)x – 2ay – bz + b = 0 (a^2 + b^2 ≠ 0) và điểm M(1;1;1). Gọi H là hình chiếu vuông góc của M lên mặt phẳng (P). Khi a, b thay đổi biết quỹ tích các điểm H là một đường tròn cố định, tính bán kính r đường tròn này. + Một hội khuyến học đã kêu gọi sự ủng hộ của các nhà hảo tâm được 120 triệu đồng. Hội khuyến học gửi số tiền đó vào ngân hàng với lãi suất 0, 75% / tháng với dự định hàng tháng rút M triệu đồng làm quà khuyến học cho học sinh nghèo vượt khó. Hội khuyến học bắt đầu trao quà cho học sinh sau một tháng gửi tiền vào ngân hàng. Để số tiền (cả lãi suất và 120 triệu đồng tiền gốc) đủ trao cho học sinh trong 10 tháng thì số tiền M mà hàng tháng Hội khuyến học rút ra tối đa (lấy kết quả chính xác đến chữ số thập phân thứ nhất) là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 – 102 – 103 – 104. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Cho hình trụ có đường kính đáy bằng 5. Hình vuông ABCD nội tiếp hình trụ với hai điểm A B thuộc đường tròn là đáy trên và C D thuộc đường tròn đáy dưới của hình trụ và AB < 3. Biết diện tích hình chiếu của hình vuông ABCD trên mặt đáy bằng 2 (đơn vị diện tích). Tính thể tích của khối trụ đó. + Trong hệ tọa độ Oxyz cho mặt cầu 22 2 (S) x z 1 7 y. Hỏi có bao nhiêu điểm M trên (Oxy), M có tọa độ nguyên sao cho qua M kẻ được ít nhất hai tiếp tuyến vuông góc với nhau đến mặt cầu (S)? + Cho hai hàm đa thức bậc 4 và bậc 3 là y f (x) y g (x) (hình vẽ dưới đây chỉ mang tính chất minh họa). Biết rằng hai đồ thị y g (x) y f (x) tiếp xúc nhau tại điểm có hoành độ bằng 1 và cắt nhau tại 2 điểm khác có hoành độ lần lượt là -2; 0. Gọi S1, S2 lần lượt là diện tích hình phẳng giới hạn bởi hai đồ thị trên ở nửa mặt phẳng bên trái và nửa bên phải của trục tung. Khi 2 2 15 S thì?
Đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2021 – 2022 lần 1 trường THPT Nguyễn Cảnh Chân, huyện Thanh Chương, tỉnh Nghệ An; đề thi mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi thử là 90 phút (không kể thời gian giám thị phát đề), đề thi có đáp án. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường Nguyễn Cảnh Chân – Nghệ An : + Trong không gian Oxyz cho điểm và mặt phẳng. Biết rằng khi tham số m thay đổi thì mặt phẳng (P) luôn tiếp xúc với hai mặt cầu cố định cùng đi qua A là (S1) và (S2). Gọi M và N là hai điểm lần lượt nằm trên (S1) và (S2). Tìm GTLN của MN? + Cho hai hàm số và (m là tham số thực) có đồ thị lần lượt là (C1) và (C2). Tập hợp tất cả các giá trị của để và cắt nhau tại đúng bốn điểm phân biệt là? + Cho lăng trụ có chiều cao bằng 6 và đáy là tam giác đều cạnh bằng 4. Gọi M, N, P lần lượt là tâm của các mặt bên. Thể tích của khối đa diện lồi có các đỉnh là các điểm bằng?
Đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở Giáo dục và Đào tạo UBND tỉnh Bình Phước. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán lần 1 sở GD&ĐT Bình Phước : + Trong không gian Oxyz, cho mặt cầu 2 2 2 S x y z 1 2 9 và điểm A 2 1 2. Từ A kẻ ba tiếp tuyến bất kì AM AN AP đến S. Gọi T là điểm thay đổi trên mặt phẳng MNP sao cho từ T kẻ được hai tiếp tuyến vuông góc với nhau đến S và cả hai tiếp tuyến này đều nằm trong MNP. Khoảng cách từ T đến giao điểm của đường thẳng 1 2 1 3 x t y t z t với mặt phẳng MNP có giá trị nhỏ nhất là? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x x 2. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để hàm số 1 2 6 2 f x x m có 5 điểm cực trị. Tính tổng tất cả các phần tử của S. + Trên parabol 2 P y x lấy hai điểm A B 1 1 2 4. Gọi M là điểm trên cung AB của P sao cho diện tích của tam giác AMB lớn nhất. Biết chu vi tam giác MAB là a b c2 5 29 khi đó giá trị a b c bằng?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán ôn thi tốt nghiệp THPT năm học 2021 – 2022 lần thứ hai trường THPT Hai Bà Trưng, tỉnh Thừa Thiên Huế (mã đề 132). Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 2 trường Hai Bà Trưng – TT Huế : + Cho hàm số ƒ(x) = ax4 + bx3 + cx2 + dx + e với a b c d e là các số thực. Đồ thị của hai hàm số y = f'(x) và y= f”(x) cắt nhau tại các điểm trong đó có hai điểm là M N (tham khảo hình vẽ). Biết diện tích miền gạch chéo bằng 8. Tính diện tích hình phẳng giới hạn bởi đồ thị của hai hàm số y = f'(x) và y = f”(x). + Trong không gian Oxyz cho hai mặt phẳng (P): 3x – 4z + 8 = 0 và mặt phẳng (Q): 3x – 4z – 12 = 0. Gọi (S) là mặt cầu đi qua gốc tọa độ O và tiếp xúc với cả hai mặt phẳng (P) và (Q). Biết rằng khi (S) thay đổi thì tâm của nó luôn nằm trên một đường tròn (C) có tâm H(a;b;c), bán kính r. Tính T. + Trên tập hợp các số phức, xét phương trình z2 – 2z + m²  = 0 (m là tham số thực). Có bao nhiêu giá trị nguyên của m thuộc đoạn [-10;10] để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn.