Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Trần Phú - Hà Tĩnh

Chủ Nhật ngày 24 tháng 03 năm 2019, trường THPT Trần Phú, tỉnh Hà Tĩnh tiếp tục tổ chức kỳ thi thử THPT Quốc gia môn Toán năm 2019 lần thứ hai, nhằm giúp học sinh khối 12 của trường rèn luyện, củng cố kiến thức môn Toán THPT để bước vào kỳ thi chính thức THPT Quốc gia 2019 môn Toán do Bộ GD&ĐT tổ chức với một sự chuẩn bị tốt nhất. Đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Trần Phú – Hà Tĩnh được biên soạn bám sát cấu trúc đề tham khảo THPT Quốc gia môn Toán năm 2019 do Bộ GD&ĐT công bố, đề gồm 04 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, học sinh có 90 phút để hoàn thành bài thi, đề thi có đáp án mã đề 101, 202, 103, 204. [ads] Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 2 trường Trần Phú – Hà Tĩnh : + Chị Lan có 400 triệu đồng mang đi gửi tiết kiệm ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Chị gửi 200 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 200 triệu đồng còn lại chị gửi theo kì hạn tháng với lãi suất 0,73% một tháng. Sau khi gửi được đúng 1 năm, chị rút ra một nửa số tiền ở loại kì hạn theo quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng 2 năm kể từ khi gửi tiền lần đầu, chị Lan thu được tất cả bao nhiêu tiền lãi (làm tròn đến hàng nghìn)? + Có một mảng bìa hình chữ nhật ABCD với AB = 2a, AD = 4a. Người ta đánh dấu E là trung điểm BC và F thuộc AD sao cho AF = a. Sau đó người ta cuốn mảnh bìa lại sao cho cạnh DC trùng cạnh AB tạo thành một hình trụ. Tính thể tích tứ diện ABEF với các đỉnh A, B, E, F nằm trên hình trụ vừa tạo thành. + Một hộp chứa 6 quả bóng đỏ (được đánh số từ 1 đến 6), 5 quả bóng vàng (được đánh số từ 1 đến 5), 4 quả bóng xanh (được đánh số từ 1 đến 4). Lấy ngẫu nhiên 4 quả bóng. Xác suất để 4 quả bóng lấy ra có đủ ba màu mà không có hai quả bóng nào có số thứ tự trùng nhau bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2022 môn Toán trường Lê Thánh Tông - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THCS & THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào Chủ Nhật ngày 10 tháng 04 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán trường Lê Thánh Tông – TP HCM : + Trong không gian với hệ tọa độ Oxyz cho hai mặt cầu 2 2 2 1 S x y z 5 25 2 2 2 2 S x y z 5 100 và điểm K 8 0 0. Đường thẳng di động nhưng luôn tiếp xúc với S1 đồng thời cắt S2 tại hai điểm M N. Tam giác KMN có thể có diện tích lớn nhất bằng? + Hàm số y f x có đạo hàm trên 4 4 có các điểm cực trị trên 4 4 là 4 3 0 2 3 và có đồ thị như hình vẽ. Đặt 3 g x f x x m 3 với m là tham số. Gọi m1 là giá trị của m để 0 1 max 2022 x g x m2 là giá trị của m để 1 0 min 2004 x g x. Giá trị của m m 1 2 bằng? + Cho hai hàm đa thức 3 2 f x ax bx cx d và 2 g x mx nx p. Biết rằng đồ thị hai hàm số y f x và y g x cắt nhau tại ba điểm có hoành độ lần lượt là 1 2 4 đồng thời cắt trục tung lần lượt tại M N sao cho MN 6 (tham khảo hình vẽ). Hình phẳng giới hạn bởi đồ thị hai hàm số đã cho (phần gạch sọc) có diện tích bằng?
Đề thi thử Toán tốt nghiệp THPT 2022 trường Phan Đình Phùng - Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán năm học 2021 – 2022 trường THPT Phan Đình Phùng, tỉnh Quảng Bình; đề thi có đáp án mã đề 121 – 122 – 123 – 124. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 trường Phan Đình Phùng – Quảng Bình : + Trong không gian Oxyz, cho điểm A(13; −7; −13), B(1; −1; 5), C(1; 1; −3). Xét các mặt phẳng (P) đi qua C sao cho A và B nằm cùng phía so với (P). Khi d(A; (P)) + 2d(B; (P)) đạt giá trị lớn nhất thì (P) có dạng ax + by + cz + 3 = 0. Giá trị của a + b + c bằng? + Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên, biết f(x) đạt cực tiểu tại điểm x = 1 và thỏa mãn (f(x) + 1) và (f(x) − 1) lần lượt chia hết cho (x − 1)2 và (x + 1)2. Gọi S1, S2 lần lượt là diện tích hình phẳng như trong hình bên. Tính 2S1−S2. + Cho hàm số y = f(x). Hàm số y = f0(x) có đồ thị như hình bên. Có bao nhiêu giá trị nguyên của tham số m với m ∈ [0; 6] để hàm số g(x) = fx2 − 2|x − 1| − 2x + m có đúng 9 điểm cực trị?
Đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở GDĐT Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 1 sở Giáo dục và Đào tạo tỉnh Bắc Giang (mã đề 114); kỳ thi được diễn ra vào thứ Sáu ngày 08 tháng 04 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT năm 2022 môn Toán lần 1 sở GD&ĐT Bắc Giang : + Một bức tường lớn hình vuông có kích thước 8 8 m x m trước đại sảnh của một tòa biệt thự được sơn loại sơn đặc biệt. Người ta vẽ hai nửa đường tròn đường kính AD AB cắt nhau tại H; đường tròn tâm D, bán kính AD cắt nửa đường tròn đường kính AB tại K. Biết tam giác “cong” AHK được sơn màu xanh và các phần còn lại được sơn màu trắng (như hình vẽ) và một mét vuông sơn trắng, sơn xanh lần lượt có giá trị 1 triệu đồng và 1,5 triệu đồng. Tính số tiền phải trả để sơn bức tường trên (làm tròn đến hàng ngàn). + Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có AB AC 2 và điểm M 2 0 4. Biết điểm B thuộc đường thẳng 1 1 1 x y z d, điểm C thuộc mặt phẳng P x y z 2 2 0 và AM là phân giác trong của tam giác ABC kẻ từ A M BC. Phương trình đường thẳng BC là?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường Bùi Thị Xuân - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 1 trường THPT Bùi Thị Xuân, tỉnh Thừa Thiên Huế. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường Bùi Thị Xuân – TT Huế : + Một công ty có ý định thiết kế một logo hình vuông có độ dài nửa đường chéo bằng 4. Biểu tượng 4 chiếc lá (được tô màu) được tạo thành bởi các đường cong đối xứng với nhau qua tâm của hình vuông và qua các đường chéo. Một trong số các đường cong ở nửa bên phải của logo là một phần của đồ thị hàm số bậc ba dạng 3 2 y ax bx x với hệ số a 0. Để kỷ niệm ngày thành lập 2 / 3, công ty thiết kế để tỉ số diện tích được tô màu so với phần không được tô màu bằng 2 3. Tính a b. + Một kiến trúc sư muốn thiết kế một mô hình kim tự tháp Ai Cập có dạng là một hình chóp tứ giác đều ngoại tiếp một mặt cầu có bán kính bằng 6m . Để tiết kiệm nguyên liệu xây dựng thì kiến trúc sư đó phải thiết kế kim tự tháp sao cho có thể tích nhỏ nhất. Chiều cao của kim tự tháp đó là? + Trong không gian Oxyz, cho mặt cầu 2 2 2 x y z 9 và điểm 0 0 0 1 1 2 2 3 x t M x y z d y t z t. Ba điểm A, B, C phân biệt cùng thuộc mặt cầu sao cho MA, MB, MC là tiếp tuyến của mặt cầu. Biết rằng mặt phẳng ABC đi qua điểm D 1 1 2. Tổng 2 2 2 T x y z 0 0 0 bằng?