Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 8 năm 2017 - 2018 phòng GDĐT Duy Xuyên - Quảng Nam

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 8 năm 2017 – 2018 phòng GD&ĐT Duy Xuyên – Quảng Nam : + Một vật thể chuyển động từ A đến B theo cách sau: đi được 4 m thì dừng lại 1 giây, rồi đi tiếp 8m dừng lại 2 giây, rồi đi tiếp 12m dừng lại 3 giây, … Cứ như vậy đi từ A đến B kể cả dừng hết tất cả 155 giây. Biết rằng khi đi vật thể luôn có vận tốc 2 m/giây. Tính khoảng cách từ A đến B. + Cho tam giác ABC vuông tại A, phân giác BD. Gọi P, Q, R lần lượt là trung điểm của BD, BC, DC. a) Chứng minh APQR là hình thang cân. b) Biết AB = 6cm, AC = 8cm Tính độ dài của AR. + Cho hình bình hành ABCD. Một đường thẳng qua B cắt cạnh CD tại M, cắt đường chéo AC tại N và cắt đường thẳng AD tại K. Chứng minh.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Lộ - Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND Thị Xã Nghĩa Lộ, tỉnh Yên Bái. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Lộ – Yên Bái : + Cho hình bình hành ABCD trong đó có A > 90° và AB > BC. Qua C dựng đường thẳng vuông góc với BC rồi lấy các điểm M và N sao cho CM = CN = CB. Qua C dựng đường vuông góc với CD rồi lấy các điểm P và Q sao cho CP = CQ = CD (M và P ở trong cùng nửa mặt phẳng với D có bờ BC). Chứng minh: a) MPNQ là hình bình hành. b) AC vuông góc MP. + Tìm số nguyên n sao cho n3 – 2 chia hết cho n – 2. + Cho n là số nguyên tố. Hỏi n10 – 1 là số nguyên tố hay hợp số? Vì sao?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho hàm số y = mx + 4m + 3 (m là tham số) có đồ thị là đường thẳng (d). Tìm điểm cố định mà đường thẳng (d) đi qua với mọi giá trị của m. + Cho tam giác nhọn ABC, các đường cao BE, CF. Gọi M là trung điểm của cạnh BC. a) Chứng minh MEF cân và AEF = ABC. b) Trên đoạn BE lấy điểm Q sao cho BFQ = CFE. Chứng minh BFQ đồng dạng với CFE và EF.BC + BF.CE = BE.CF. + Cho tam giác nhọn ABC. Gọi N là điểm bất kì trên đoạn thẳng BC (N khác B và C). Gọi các điểm H, K lần lượt là hình chiếu vuông góc của N trên cạnh AB, AC. Xác định vị trí của điểm N để đoạn thẳng HK có độ dài nhỏ nhất.
Đề giao lưu HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi môn Toán 8 THCS cấp thành phố năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Thanh Hóa, tỉnh Thanh Hóa. Trích dẫn Đề giao lưu HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Thanh Hóa : + Giả sử đa thức f x chia cho x 1 dư 4; chia cho 2 x 1 dư 2 3 x. Hãy tìm dư trong phép chia f x cho 2. + Cho O là trung điểm của đoạn thẳng AB. Vẽ tia Ax By cùng phía đối với AB và vuông góc AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh OAC đồng dạng với DBO và 2 AB AC BD. b) Kẻ OM vuông góc CD tại M. Tia BM cắt tia Ax tại I. Chứng minh AC CM CI 2) Cho ABC (AB AC) trọng tâm G. Qua G vẽ đường thẳng d cắt các cạnh AB AC lần lượt ở D và E. Chứng minh rằng 3 AB AC AD AE. + Một hộp đựng 20 quả bóng trong đó có 4 quả màu xanh, 5 quả màu trắng và 6 quả màu vàng (các quả còn lại khác màu nhau). Lấy ngẫu nhiên từ hộp ra 2 quả, tính xác suất để lấy được 2 quả cùng màu?
Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Châu Đức - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Châu Đức, tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Châu Đức – BR VT : + Viết phương trình đường thẳng (d): y = ax + b (a khác 0). Biết (d) song song với đường thẳng y = 2x và (d) cắt trục hoành tại điểm có hoành độ bằng 3. + Cho hình thang ABCD (AB // CD; AB < CD). Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, AC, CD, DB. 1) Chứng minh tứ giác EFGH là hình bình hành. 2) Tìm điều kiện của hình thang ABCD để tứ giác EFGH là hình thoi. 3) Gọi O là giao điểm của AC và BD (với O nằm trong tứ giác EFGH). Chứng minh: S_OEH + S_OFG = 1/2.S_EFGH. + Cho hình bình hành ABCD. Từ một điểm G trên đường chéo AC kẻ đường thẳng bất kì cắt cạnh AB tại điểm E và cắt cạnh AD tại điểm F. Chứng minh rằng: AB AD AC AE AF AG.