Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2023 - 2024 sở GDĐT Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho phương trình 2 x m xm 2 1 6 40 (với m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm 1 2 x thoả mãn 2 2 1 2 12 2 1 x x 3. + Một mảnh vườn hình thang ABCD có 90 o BAD ADC AB m AD m DC m. Người ta trồng hoa trên phần đất là nửa hình tròn tâm O đường kính AD, phần còn lại của mảnh vườn để trồng cỏ (phần tô đậm trong hình vẽ bên). Tính diện tích phần đất trồng cỏ (kết quả làm tròn đến chữ số thập phân thứ hai, lấy π ≈ 3,14). + Cho tam giác ABC nhọn (AB AC) nội tiếp O. Hai đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm của AH, đường thẳng đi qua M vuông góc với BM cắt AC tại N. Gọi K là giao điểm thứ hai của AH với đường tròn tâm O. a) Chứng minh bốn điểm BM EN cùng thuộc một đường tròn và MBN KAC. b) Kéo dài KN cắt đường tròn (O) tại T. Chứng minh tam giác BHK cân và ba điểm BOT thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề thi bao gồm 5 câu tự luận, thời gian làm bài 120 phút (không tính thời gian giao đề). Kỳ thi sẽ diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM: Cho các phương trình $x^2 - 2ax + 3a = 0$ (1) và $x^2 - 4x + a = 0$ (2), với a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68. Cho phương trình $2^x + 5^y = k$ (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm. Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB. Hy vọng rằng đề thi sẽ giúp quý thầy cô và các em học sinh lớp 9 chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc tất cả các em đạt kết quả cao trong kỳ thi!
Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2022 2023 trường PTNK TP HCM Xin chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2022 – 2023 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề thi bao gồm 10 câu trắc nghiệm (mỗi câu 2 điểm) và 4 câu tự luận (mỗi câu 8 điểm), thời gian làm bài là 120 phút (không tính thời gian giao đề). Để trả lời các câu hỏi trắc nghiệm, học sinh cần ghi 01 ký tự A, B, C hoặc D vào ô trả lời tương ứng với đáp án, và bỏ câu trả lời bằng cách gạch chéo ký tự đã ghi và chọn lại đáp án đúng. Ví dụ trong đề thi có một bài toán về hình vuông ABCD và hình chữ nhật MNPQ, với tổng chu vi là 42 cm và tổng diện tích là 55 cm2. Biết rằng AB = MN, học sinh cần tính độ dài AC khi chiều rộng của hình chữ nhật là MN. Ngoài ra, đề thi còn đưa ra một bài toán khác liên quan đến Sẻ Project - dự án thiện nguyện của trường PTNK, ĐHQG TP. HCM. Học sinh sẽ được yêu cầu tính số tiền góp của Sẻ vào các năm 2019, 2020, 2021 và tìm ra số tiền góp trong năm 2020 dựa trên đã biết. Mong rằng đề thi sẽ giúp các em thí sinh thử sức và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em đạt kết quả tốt trong bài thi của mình!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Hà Tĩnh Đề tuyển sinh THPT môn Toán năm 2022-2023 sở GD ĐT Hà Tĩnh Xin chào quý thầy cô giáo và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến quý vị bộ đề thi chính thức tuyển sinh vào lớp 10 THPT môn Toán năm học 2022-2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh. Kỳ thi được tổ chức vào thứ Hai, ngày 06 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022-2023 sở GD&ĐT Hà Tĩnh: - Đề bài 1: Hưởng ứng “Ngày sách và Văn hóa đọc Việt Nam năm 2022”, một nhà sách đã có chương trình giảm giá cho tất cả các loại sách. Hãy giúp bạn Nam tính giá trên mỗi quyển sách tham khảo môn Toán và môn Ngữ văn. - Đề bài 2: Giải bài toán về tam giác ABC vuông tại A, đường cao AH (H thuộc BC) và sinh ABC = 4/5. Tính độ dài các đoạn AC và BH. - Đề bài 3: Xét tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AH (H thuộc BC) và vẽ HM vuông góc AB, HN vuông góc AC. a) Chứng minh AMHN là tứ giác nội tiếp. b) Chứng minh OA vuông góc MN và AD = AH. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em học sinh có những giờ học hiệu quả và đạt kết quả cao trong kỳ thi!
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Vĩnh Long
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Vĩnh Long Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD&ĐT Vĩnh LongBài 1:Bài 2:Bài 3: Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD&ĐT Vĩnh Long Chào mừng quý thầy cô giáo và các em học sinh lớp 9! Đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Vĩnh Long, diễn ra vào ngày 04 tháng 06 năm 2022. Bài 1: Một xe máy và một ô tô cùng khởi hành đi từ thành phố A đến thành phố B cách nhau 120 km. Vì vận tốc của ô tô lớn hơn vận tốc của xe máy 10 km/h nên ô tô đến B sớm hơn xe máy 36 phút. Hỏi vận tốc của xe máy là bao nhiêu? Bài 2: Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết AB = 3 cm, BC = 5 cm. a) Tính độ dài các đoạn thẳng AC và AH. b) Gọi I là trung điểm của AC, tính độ dài đoạn thẳng AI và số đo góc ABI (làm tròn đến độ). Bài 3: Cho tam giác nhọn ABC nội tiếp đường tròn (O). Vẽ hai đường cao BE và CF của tam giác ABC cắt nhau tại H (E thuộc AC và F thuộc AB). a) Chứng minh tứ giác AEHF nội tiếp được đường tròn. b) Chứng minh BH BE BF BA. c) Đường thẳng CF cắt đường tròn (O) tại D (D khác C). Gọi P, Q, I lần lượt là các điểm đối xứng của B qua AD, AC, CD; K là giao điểm của BP và AD. Chứng minh ba điểm P, I, Q thẳng hàng.