Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 10 lần 1 năm 2022 - 2023 trường THPT Yên Lạc - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát kiến thức môn Toán 10 lần 1 năm học 2022 – 2023 trường THPT Yên Lạc, tỉnh Vĩnh Phúc; đề thi mã đề 103 được biên soạn theo hình thức 100% trắc nghiệm, đề gồm 04 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian phát đề); đề thi có đáp án. Trích dẫn Đề khảo sát Toán 10 lần 1 năm 2022 – 2023 trường THPT Yên Lạc – Vĩnh Phúc : + Một công ty sản xuất bao bì cần sản xuất 3 loại hộp giấy X, Y, Z từ những tấm bìa giống nhau để đựng ba loại sản phẩm khác nhau. Mỗi tấm bìa có hai cách cắt khác nhau: Cách thứ nhất cắt được 3 hộp X, 1 hộp Y và 6 hộp Z. Cách thứ hai cắt được 2 hộp X, 3 hộp Y và 1 hộp Z. Theo kế hoạch, số hộp mỗi loại X và Z tối thiểu là 900 hộp; số hộp loại Y tối thiểu là 1000 hộp. Tìm phương án sao cho tổng số tấm bìa phải dùng là ít nhất? A. Cắt theo cách một 100 tấm, cắt theo cách hai 300 tấm. B. Cắt theo cách một 150 tấm, cắt theo cách hai 250 tấm. C. Cắt theo cách một 250 tấm, cắt theo cách hai 100 tấm. D. Cắt theo cách một 160 tấm, cắt theo cách hai 220 tấm. + Thống kê điểm kiểm tra giữa kì ba môn Toán, Lý, Hóa của 41 học sinh lớp 10A, có 23 bạn đạt điểm 10 môn Toán, 20 bạn đạt điểm 10 môn Lý, 21 bạn đạt điểm 10 môn Hó a. Có 7 em không đạt điểm 10 môn nào và 5 em đạt điểm 10 cả ba môn. Hỏi có bao nhiêu em đạt điểm 10 đúng hai trong ba môn Toán, Lý, Hóa? + Một cơ sở dùng không quá 10kg gạo và 3kg thịt để gói hai loại bánh trưng: Bánh trưng vuông và bánh trưng tày. Mỗi chiếc bánh trưng vuông cần 0,6 kg gạo và 0,2 kg thịt. Mỗi bánh trưng tày cần 0,5kg gạo và 0,15kg thịt. Nếu mỗi ngày cơ sở đó gói x chiếc bánh trưng vuông và y chiếc bánh trưng tày thì x, y phải thỏa mãn hệ bất phương trình nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 - 2017 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 – 2017 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 3 bài tập tự luận, có hướng dẫn giải và thang điểm.
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên - Bắc Ninh lần 2
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên – Bắc Ninh lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 - Bắc Ninh
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 – Bắc Ninh gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg hóa chất A và 9kg hóa chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg hóa chất A và 0,6kg hóa chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10kg hóa chất A và 1,5kg hóa chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II? + Tìm độ dài hai cạnh của một tam giác vuông biết rằng: Khi ta tăng mỗi cạnh 1 cm thì diện tích tăng 5,5 cm2; khi ta giảm chiều dài cạnh này 3 cm và cạnh kia 2 cm thì diện tích giảm 9 cm2. Đáp án đúng là? + Tìm khẳng định SAI trong các khẳng định sau: A. Phương sai luôn luôn lớn hơn độ lệch chuẩn B. Phương sai càng lớn thì độ phân tán của các giá trị quanh số trung bình càng lớn C. Phương sai luôn luôn là 1 số dương D. Phương sai là bình phương của độ lệch chuẩn
Đề khảo sát chất lượng môn Toán lớp 10 trường THPT chuyên Vĩnh Phúc lần 4
Đề khảo sát chất lượng môn Toán lớp 10 trường THPT chuyên Vĩnh Phúc lần 4 gồm 40 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Để chào mừng ngày 26/3, đoàn trường THPT Chuyên phát động cuộc thi hoa điểm tốt với quy định như sau: Với mỗi điểm 10, 9, 8 tương ứng sẽ được thưởng xyz , , bông hoa. Tuần thứ nhất, lớp 10A được 7 điểm 10 và 5 điểm 8 nên được thưởng 88 bông hoa. Tuần thứ hai, lớp 10A được 1 điểm 10, 10 điểm 9 và 15 điểm 8 nên được thưởng 154 bông hoa. Tuần thứ ba, lớp 10A được 15 điểm 10, 1 điểm 9, 2 điểm 8 nên được thưởng 152 bông hoa. Hỏi nếu lớp 10A được 5 điểm 10, 10 điểm 9 và 7 điểm 8 thì lớp đó được thưởng bao nhiêu bông hoa? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(4;-1), phương trình đường cao AH: 2x – 3y + 12 = 0, phương trình đường trung tuyến AM: 2x + 3y = 0. Viết phương trình đường thẳng chứa cạnh AC. + Thống kê điểm thi môn toán trong một kì thi của 400 em học sinh người ta thấy có 72 bài được điểm 5. Hỏi tần suất của giá trị xi = 5 là bao nhiêu?