Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán THPT năm 2019 - 2020 sở GDĐT Cần Thơ

Chủ Nhật ngày 10 tháng 05 năm 2020, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi môn Toán GD THPT cấp thành phố năm học 2019 – 2020. Đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ gồm có 02 trang với 09 bài toán dạng tự luận, thang điểm 20, thời gian làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán THPT năm 2019 – 2020 sở GD&ĐT Cần Thơ : + Ban chấp hành Đoàn TNCS HCM của một trường THPT có 12 ủy viên là đoàn viên học sinh. Trong đó, khối 10 có 5 đoàn viên, khối 11 có 4 đoàn viên và khối 12 có 3 đoàn viên. Trong đợt phòng chống dịch bệnh Covid-19, để giúp người dân thực hiện việc khai báo y tế trên ứng dụng NCOVI, Bí thư Đoàn trường đã chọn ra 4 đoàn viên trong số này để đi làm nhiệm vụ. Tính xác suất sao cho 4 đoàn viên được chọn có đủ ba khối. [ads] + Một cửa hàng bán hàng trả góp cho khách hàng với điều kiện như sau: Không cần phải trả trước số tiền M là trị giá của món hàng khi mua hàng. Chỉ cần trả một số tiền cố định X mỗi tháng kể từ ngày mua với lãi suất cố định hàng tháng là r%. Thời hạn trả hết nợ là n tháng (do khách hàng chọn theo qui định của cửa hàng). Hãy lập công thức tính số tiền X mà khách hàng phải trả góp hàng tháng với các điều kiện nêu trên. + Ở vòng bán kết của một giải Tiger cup có sự góp mặt của 4 đội Việt Nam, Xingapo, Thái Lan và Inđônêxia. Trước khi các trận đấu của vòng này diễn ra các bạn Hưng, Huy và Hoàng dự đoán như sau: Hưng: Xingapo hạng nhì, Thái Lan hạng ba. Huy: Việt Nam hạng nhì, Thái Lan hạng tư. Hoàng: Xingapo hạng nhất, Inđônêxia hạng nhì. Biết rằng, dự đoán của mỗi bạn đều có một dự đoán đúng và một dự đoán sai. Bằng lập luận dựa theo các dữ kiện đã cho, hãy xác định kết quả xếp hạng đúng cho mỗi đội.

Nguồn: toanmath.com

Đọc Sách

Đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD ĐT Đắk Lắk (ngày 2)
Nội dung Đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD ĐT Đắk Lắk (ngày 2) Bản PDF Thứ Tư ngày 23 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi thành lập các đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT năm học 2020 – 2021 môn Toán (ngày thi thứ hai). Đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 2) gồm 01 trang với 04 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 2) : + Tìm số nguyên dương n nhỏ nhất sao cho tồn tại các số nguyên a1, a2 … an để đa thức fn(x) = x^2n+2 – 2(a1 + a2 + … + an)^2.x^n+1 + (a1^4 + a2^4 + … + an^4 + 1) có ít nhất một nghiệm nguyên. + Cho a, b là hai số nguyên dương sao cho (a + b^3)/(a^2 + 3ab + 3b^2 – 1) là một số nguyên. Chứng minh rằng a^2 + 3ab + 3b^2 – 1 chia hết cho lập phương của một số nguyên lớn hơn 1. + Cho tam giác ABC, đường tròn (O) cắt cạnh BC tại hai điểm D, E (D nằm giữa B và E), cắt cạnh CA tại hai điểm F, G (F nằm giữa C và G) và cắt cạnh AB tại hai điểm H, I (H nằm giữa A và I). Gọi M là giao điểm của DF và EI, N là giao điểm của EG và FH, P là giao điểm của GI và HD. Chứng minh rằng các đường thẳng AM, BN và CP đồng quy tại một điểm.
Đề thi lập đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT Đắk Lắk (ngày 1)
Nội dung Đề thi lập đội tuyển HSG Toán THPT năm 2020 2021 sở GD ĐT Đắk Lắk (ngày 1) Bản PDF Thứ Ba ngày 22 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi thành lập các đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT năm học 2020 – 2021 môn Toán (ngày thi thứ nhất). Đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 1) gồm 01 trang với 04 bài toán, thời gian làm bài 180 phút. Trích dẫn đề thi lập đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT Đắk Lắk (ngày 1) : + Tìm tất cả các hàm số f: R → R thỏa mãn f(xy) = f(x).f(y) với mọi x, y thuộc R và f(x^2020 + yf(x)) = 2021xf(y) + f(f(x)) với mọi x, y thuộc R. + Trên hai cạnh AB và AC của tam giác ABC lần lượt lấy hai điểm D và E. Hai điểm M và N chia đoạn thẳng DE thành ba phần bằng nhau. Các đường thẳng AM và AN cắt cạnh BC lần lượt tại I và K. Chứng minh rằng IK =< 1/3.BC. + Cho tập hợp A = {1; 2; 3; 4; 5; 6; 7; 8} và M = {a1/9 + a2/9 + a3/9 + a4/9 với a_i thuộc A, i = 1, 2, 3, 4}. Sắp xếp các phần tử của tập hợp M thành một dãy số theo thứ tự giảm dần. Hãy tìm số đứng thứ 2020 của dãy số đó.
Đề thi HSG Toán cấp trường năm 2020 2021 trường chuyên Lam Sơn Thanh Hóa
Nội dung Đề thi HSG Toán cấp trường năm 2020 2021 trường chuyên Lam Sơn Thanh Hóa Bản PDF Đề thi HSG Toán cấp trường năm học 2020 – 2021 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa gồm 02 bài thi được tổ chức trong hai ngày: ngày thi thứ nhất gồm 04 bài toán, ngày thi thứ hai gồm 03 bài toán, thời gian làm bài mỗi bài thi là 180 phút. Trích dẫn đề thi HSG Toán cấp trường năm 2020 – 2021 trường chuyên Lam Sơn – Thanh Hóa : + Cho tam giác ABC nội tiếp đường tròn w và l là đường thẳng không có điểm chung với w. Ký hiệu P là hình chiếu vuông góc của tâm đường tròn w lên l. Các đường thẳng BC, CA, AB lần lượt cắt đường thẳng l tại các điểm X, Y, Z khác P. Chứng minh rằng tâm của các đường tròn ngoại tiếp tam giác AXP, BYP và CZP thẳng hàng. + Bảng ô vuông gồm m hàng và n cột, với mỗi ô vuông con được đặt một trong hai số: 0 hoặc 1. Một bảng được gọi là “tốt” nếu tổng các số của mỗi dòng, của mỗi cột, là số chẵn. Hỏi: a) Có bao nhiêu bảng số như trên? b) Có bao nhiêu bảng “tốt”? + Cho tam giác nhọn ABC nội tiếp (O). Giả sử OA cắt các đường cao từ B và C của tam giác ABC lần lượt tại P, Q. Gọi H là trực tâm tam giác ABC. Chứng minh rằng tâm đường tròn ngoại tiếp của tam giác PQH thuộc một trung tuyến của tam giác ABC.
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Hà Nam
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 2021 sở GD ĐT Hà Nam Bản PDF Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi chọn học sinh giỏi lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán lớp 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam : + Xếp 35 học sinh, trong đó có bốn bạn Dũng, Minh, Công, Đoàn thành một hàng ngang. Hỏi có tất cả bao nhiêu cách xếp hàng, mà trong mỗi cách xếp hàng không có ba bạn nào trong bốn bạn Dũng, Minh, Công, Đoàn đứng ở ba vị trí liên tiếp. + Cho hàm số f(x) = (x^3 – 3x^2 + 3x + 5)/(x + 1). 1. Chứng minh đồ thị hàm số có ba điểm cực trị không thẳng hàng. 2. Gọi A, B, C là ba điểm cực trị của đồ thị hàm số. Tính diện tích tam giác ABC. + Cho tứ giác ABCD cố định, có hai đường chéo AC, BD cắt nhau tại P. Đường trung trực của các đoạn thẳng AC và BD cắt nhau tại K. Một đường thẳng d thay đổi đi qua K, cắt đường tròn ngoại tiếp tam giác OAB tại Q, R. Chứng minh rằng trực tâm của tam giác POR luôn nằm trên một đường tròn cố định, khi đường thẳng d thay đổi.