Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Nguyên hàm và tích phân hàm lượng giác

Tài liệu gồm 32 trang được biên soạn bởi các tác giả: Nguyễn Minh Tuấn và Phạm Việt Anh, hướng dẫn phương pháp giải các dạng toán nguyên hàm và tích phân hàm lượng giác từ cơ bản đến nâng cao, thường gặp trong chương trình Giải tích 12 chương 3. Các dạng toán nguyên hàm và tích phân hàm lượng giác trong tài liệu: 1. Các dạng toán cơ bản Dạng 1 . Tính tích phân tổng quát sau: ${I_1} = \int {{{(\sin x)}^n}} dx$, ${I_2} = \int {{{(\cos x)}^n}} dx.$ Dạng 2 . Đôi khi trong khi làm các bài tính tích phân ta bắt gặp các bài toán liên quan tới tích các biểu thức $\sin x$, $\cos x$ khi đó ta sẽ sử dụng các công thức biến tích thành tổng để giải quyết các bài toán này. Sau đây là các công thức cần nhớ: $I = \int {(\cos mx)} (\cos nx)dx$ $ = \frac{1}{2}\int {(\cos (} m – n)x + \cos (m + n)x)dx.$ $I = \int {(\sin mx)} (\sin nx)dx$ $ = \frac{1}{2}\int {(\cos (} m – n)x – \cos (m + n)x)dx.$ $I = \int {(\sin mx)} (\cos nx)dx$ $ = \frac{1}{2}\int {(\sin (} m + n)x + \sin (m – n)x)dx.$ $I = \int {(\cos mx)} (\sin nx)dx$ $ = \frac{1}{2}\int {(\sin (} m + n)x – \sin (m – n)x)dx.$ Dạng 3 . Tính tích phân tổng quát $I = \int {{{\sin }^m}} x{\cos ^n}xdx.$ Dạng 4 . Tính tích phân tổng quát ${I_1} = \int {{{(\tan x)}^n}} dx$, ${I_2} = \int {{{(\cot x)}^n}} dx.$ Dạng 5 . Tính tích phân tổng quát $I = \int {\frac{{{{(\tan x)}^m}}}{{{{(\cos x)}^n}}}} dx$, $I = \int {\frac{{{{(\cot x)}^m}}}{{{{(\sin x)}^n}}}} dx.$ [ads] 2. Các dạng toán biến đổi nâng cao Các bài toán nguyên hàm tích phân lượng giác rất phong phú và do đó sẽ không dừng lại các dạng toán bên trên. Ở phần này ta sẽ cùng tìm hiểu các dạng toán nâng cao hơn, với những phép biến đổi phức tạp hơn. Dạng 1 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{\sin (x + a)\sin (x + b)}}} .$ Dạng 2 . Tính tích phân tổng quát $I = \int {\tan } (x + a)\tan (x + b)dx.$ Dạng 3 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{a\sin x + b\cos x}}} .$ Dạng 4 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{a\sin x + b\cos x + c}}} .$ Dạng 5 . Tính tích phân tổng quát $I = \int {\frac{{dx}}{{a{{\sin }^2}x + b\sin x\cos x + c{{\cos }^2}x}}} .$ Dạng 6 . Xét tích phân tổng quát $I = \int {\frac{{{a_1}\sin x + {b_1}\cos x}}{{{a_2}\sin x + {b_2}\cos x}}} dx.$ Dạng 7 . Xét tích phân tổng quát $I = \int {\frac{{a{{(\sin x)}^2} + b\sin x\cos x + c{{(\cos x)}^2}}}{{m\sin x + n\cos x}}} dx.$ Dạng 8 . Xét tích phân tổng quát $I = \int {\frac{{m\sin x + n\cos x}}{{a{{(\sin x)}^2} + 2b\sin x\cos x + c{{(\cos x)}^2}}}} dx.$ Dạng 9 . Biến đổi nâng cao dạng tích phân: $\int {\frac{{dx}}{{{{(\sin x)}^n}}}} $ và $\int {\frac{{dx}}{{{{(\cos x)}^n}}}} .$

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm tích phân hàm hữu tỉ và hàm lượng giác
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân hàm hữu tỉ và hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.
Chuyên đề trắc nghiệm công thức từng phần tính tích phân
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức từng phần tính tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. Dạng 1: Sử dụng công thức tích phân từng phần. Dạng 2: Tích phân từng phần với hàm ẩn. Dạng 3: Sử dụng bất đẳng thức tích phân. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương pháp đổi biến số tính tích phân
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp đổi biến số tính tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Định lí. 2. Các dạng toán trọng tâm. + Dạng 1: Đổi biến số với các hàm vô tỉ quen thuộc. + Dạng 2: Tích phân đổi biến số với hàm ẩn. + Dạng 3: Tích phân đổi biến số với hàm số chẵn, hàm số lẻ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm các công thức cơ bản về tích phân
Tài liệu gồm 14 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề các công thức cơ bản về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. 1. Khái niệm hình thang cong. 2. Tích phân là gì? II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.