Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng

Nội dung Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng Bản PDF - Nội dung bài viết Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng Đề thi thử vào 10 lần 2 năm 2019 2020 môn Toán phòng GD ĐT Dương Kinh Hải Phòng Đề thi thử vào 10 lần 2 năm học 2019 – 2020 môn Toán phòng GD&ĐT Dương Kinh – Hải Phòng là bài kiểm tra gồm 2 trang với 5 bài toán tự luận. Thời gian làm bài là 120 phút. Kỳ thi nhằm mục đích kiểm tra kiến thức môn Toán của học sinh lớp 9 để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề thi bao gồm nhiều dạng bài toán khác nhau, từ những bài đơn giản đến những bài phức tạp, giúp học sinh rèn luyện và củng cố kiến thức môn Toán một cách đồng đều. Với mỗi bài toán, học sinh sẽ phải áp dụng kiến thức đã học để giải quyết các vấn đề được đưa ra. Một trong những bài toán trong đề thi là về việc quy định diện tích khu trường theo quy định của Bộ Y tế, phản ánh rõ việc kiểm tra không chỉ kiến thức mà còn tính toán và logic của học sinh. Bài toán còn mang tính thực tế khi liên quan đến việc xác định diện tích khu trường phù hợp cho số học sinh cụ thể của một trường học. Đề thi cũng tập trung vào việc phát triển kỹ năng phân tích, suy luận và giải quyết vấn đề của học sinh thông qua các bài toán phức tạp như chứng minh tính chất của tứ giác, tính thể tích hình quay, và tính tòan học hình học. Trong tổng thể, đề thi thử vào 10 môn Toán lần 2 năm 2019 – 2020 của phòng GD&ĐT Dương Kinh – Hải Phòng không chỉ là cơ hội để học sinh ôn tập kiến thức mà còn là bài kiểm tra để đánh giá khả năng giải quyết vấn đề và logic của học sinh. Đề thi mang tính chất thiết thực và là bước chuẩn bị quan trọng cho kỳ thi tuyển sinh vào lớp 10 THPT.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên ĐHSP Hà Nội
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội Ngày 14 tháng 07 năm 2020, trường Trung học Phổ thông chuyên Đại học Sư Phạm Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán cho năm học 2020-2021. Đề thi gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Đề tuyển sinh lớp 10 môn Toán năm 2020-2021 của trường THPT chuyên ĐHSP Hà Nội được thiết kế cho mọi thí sinh dự thi vào trường chuyên. Trong đề, có những bài toán thú vị như: Hai ô tô cùng khởi hành từ A đi B trên quãng đường 120 km. Ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 10 km/giờ và đến đích sớm hơn 0,4 giờ. Hãy tính vận tốc của mỗi ô tô. Bác An muốn làm cửa sổ khuôn gỗ hình nửa hình tròn phía trên và hình chữ nhật phía dưới. Hãy giúp bác An tính độ dài các cạnh của hình chữ nhật để có diện tích lớn nhất. Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) và đường kính BC. Chứng minh các mệnh đề liên quan ABCD. Đề tuyển sinh môn Toán năm 2020-2021 trường THPT chuyên ĐHSP Hà Nội mang đến những bài toán thú vị và thách thức cho các thí sinh dự thi. Chúc các em đạt kết quả cao!
Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2)
Nội dung Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) Vào sáng thứ Năm ngày 09 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2) là đề thi được sử dụng cho các thí sinh thi vào các lớp chuyên xã hội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 2): Tính bán kính đường tròn ngoại tiếp tam giác đều ABC, biết độ dài cạnh của tam giác là √3 cm. Từ điểm A nằm ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC đến đường tròn (B và C là các tiếp điểm). Đoạn thẳng AO cắt BC và đường tròn (O) lần lượt tại M và I. Chứng minh rằng ABOC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. Gọi D là điểm thuộc cung lớn BC của đường tròn (O) (với DB < DC) và K là giao điểm thứ hai của tia DM với đường tròn (O). Chứng minh rằng MD.MK = MA.MO. Gọi E và F lần lượt là hình chiếu vuông góc của A trên các đường thẳng DB và DC. Chứng minh AF song song với ME. Xét a, b, c là các số dương thỏa mãn 2a + 2b + 2c + ab + bc + ca = 24. Tìm giá trị nhỏ nhất của biểu thức P = a^2 + b^2 + c^2. Đề Toán tuyển sinh chuyên năm 2020 – 2021 sở GD ĐT Nam Định (Đề 2) chứa những bài toán thú vị và đòi hỏi sự tư duy logic, khả năng suy luận của học sinh. Hãy tập trung và cố gắng làm thật tốt để đạt kết quả cao trong kỳ thi tuyển sinh vào lớp 10 chuyên.
Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1)
Nội dung Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1) Bản PDF - Nội dung bài viết Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1) Đề Toán tuyển sinh chuyên năm 2020 2021 sở GD ĐT Nam Định (Đề 1) Ngày 09 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Nam Định đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT chuyên năm học 2020 – 2021 môn thi Toán. Đề Toán tuyển sinh lớp 10 chuyên năm 2020 – 2021 sở GD&ĐT Nam Định (Đề 1) là đề thi chung được sử dụng cho tất cả các thí sinh tham dự kỳ thi. Bài thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút. Trích dẫn một số câu hỏi từ đề thi: 1. Phương trình x^2 – (m + 1)x + 2m – 2 = 0 có nghiệm với mọi giá trị của tham số m không? Tìm tất cả các giá trị của m để phương trình có hai nghiệm dương phân biệt thỏa mãn điều kiện √(x1 + 2) – √(x2 + 2) = 1. 2. Chứng minh rằng tam giác ABC là tứ giác nội tiếp và I là tâm đường tròn nội tiếp tam giác ABC. Tìm góc giữa DM và EF. 3. Tìm tất cả các giá trị của tham số m để đường thẳng y = x + 3m cắt parabol y = x^2 tại hai điểm phân biệt. Đây là một bài thi đầy thách thức đối với các thí sinh, đòi hỏi sự tư duy logic, kiến thức sâu rộng và khả năng giải quyết vấn đề. Hy vọng các thí sinh đã có một kỳ thi tốt và đạt kết quả cao!
Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bình Dương
Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 THPT môn Toán 2020 - 2021 sở GD&ĐT Bình Dương Đề thi tuyển sinh lớp 10 THPT môn Toán 2020 - 2021 sở GD&ĐT Bình Dương Ngày 09 tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Bình Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán nhằm chuẩn bị cho năm học 2020 - 2021. Bài thi gồm 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trong đó, một số câu hỏi đáng chú ý như sau: Câu 1: Tính giá trị của các biểu thức sau không cần giải phương trình: 1/x1 + 1/x2; x1^2 + x2^2 từ phương trình x^2 - 2020x + 2021 = 0 có hai nghiệm phân biệt x1 và x2. Câu 2: Vẽ đồ thị của Parabol (P): y = 3/2x^2 và đường thẳng (d): y = -3/2x + 3 trên cùng một mặt phẳng tọa độ, sau đó tìm tọa độ các giao điểm của hai đồ thị. Câu 3: Trên đường tròn (O;3cm) có đường kính AB và tiếp tuyến Ax. Tính độ dài đoạn thẳng AD, chứng minh tứ giác MNDE nội tiếp được trong đường tròn, tam giác ABN là tam giác cân và N, E, F thẳng hàng khi kẻ EF vuông góc AB (F thuộc AB). Với các câu hỏi đều liên quan đến kiến thức Toán học cơ bản và yêu cầu tư duy logic, đề thi tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GD&ĐT Bình Dương đã đòi hỏi sự chú ý, khéo léo và kiên nhẫn từ các thí sinh để giải quyết.