Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 7 - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 7, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 7 – TP HCM : + Một cửa hàng trà sữa có chương trình khuyến mãi: giảm 20% cho 1 ly trà sữa có giá bán ban đầu là 45 000 đồng/ly. Nếu khách hàng mua từ ly thứ 10 trở lên thì từ ly thứ 10 mỗi ly được giảm thêm 10% trên giá đã giảm. Hỏi một học sinh đặt mua 30 ly trà sữa ở cửa hàng thì phải trả tất cả bao nhiêu tiền? + Một cái tháp được dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 600. Từ một điểm khác cách điểm ban đầu 20 m người ta cũng nhìn thấy đỉnh tháp với góc nâng 300 (Hình minh họa). Tính chiều cao của tháp. (Làm tròn đến mét). + Cước điện thoại y (nghìn đồng) là số tiền mà người sử dụng điện thoại cần trả hàng tháng, nó phụ thuộc vào lượng thời gian gọi x (phút) của người đó trong tháng. Mối liên hệ giữa hai đại lượng này là một hàm số bậc nhất y ax b. Hãy tìm a b biết rằng nhà bạn An trong tháng 5 đã gọi 100 phút với số tiền là 40 nghìn đồng và trong tháng 6 gọi 40 phút với số tiền là 28 nghìn đồng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Bến Tre; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho tam giác ABC vuông tại A với (AB AC) có đường cao AH. Biết BC 1dm và 12 dm 25 AH. a) Tính độ dài hai cạnh AB và AC. b) Kẻ HD AB; HE AC (với D AB E AC). Gọi I là trung điểm của BC. Chứng minh IA DE. + Cho tam giác ABC có đường phân giác ngoài của góc A cắt đường thẳng BC tại điểm D. Gọi M là trung điểm của BC. Đường tròn ngoại tiếp ADM cắt các đường thẳng AB, AC lần lượt tại E và F (với E, F khác A). Gọi N là trung điểm của EF. Chứng minh rằng MN // AD. + Cho phương trình: 2 x m x m 3 4 4 0 1 với m là tham số. Tìm m để phương trình (1) có hai nghiệm phân biệt 1 x 2 x thỏa 1 2 1 2 x x x x 20.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc; đề được biên soạn theo hình thức 20% trắc nghiệm + 80% tự luận (theo điểm số), phần trắc nghiệm gồm 04 câu, phần tự luận gồm 08 câu, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Vĩnh Phúc : + Cho parabol 2 P y x và đường thẳng d y x m 2 (với m là tham số). Tìm tất cả các giá trị của tham số m để đường thẳng d cắt parabol P tại hai điểm phân biệt có A x y B x y 1 1 2 2 sao cho 2 2 1 2 1 2 1 2 y y x x x x 6. + Một đội công nhân A và B làm chung một công việc và dự định hoàn thành trong 12 ngày. Khi làm chung được 8 ngày thì đội A được điều động đi làm việc khác, đội B tiếp tục làm phần việc còn lại. Kể từ khi làm một mình, do cải tiến cách làm nên năng suất của đội B tăng gấp đôi, do đó đội B đã hoàn thành phần việc còn lại trong 8 ngày tiếp theo. Hỏi với năng suất ban đầu thì mỗi đội làm một mình sẽ hoàn thành công việc đó trong bao lâu? + Cho đường tròn O và điểm A nằm ngoài đường tròn. Qua điểm A kẻ hai tiếp tuyến AB và AC đến O (B C là các tiếp điểm). Kẻ tia Ax (nằm giữa hai tia AB, AO) cắt đường tròn tại E và F (E nằm giữa A và F). a) Chứng minh rằng tứ giác ABOC nội tiếp đường tròn. b) Chứng minh rằng 2 BA AE AF và OEF OHF với H là giao điểm của AO và BC. c) Đường thẳng qua E song song với BF cắt đường thẳng BC tại K. Đường thẳng AK cắt đường thẳng BF tại M. Chứng minh rằng MC HF 2.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Tiền Giang; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol 2 P y 2x. a) Vẽ đồ thị parabol (P). b) Bằng phép tính, tìm tất cả những điểm thuộc Parabol (P) (khác gốc tọa độ O) có tung độ gấp hai lần hoành độ. + Quãng đường AB dài 150 km. Một xe tải khởi hành đi từ A đến B, cùng lúc đó một ô tô cũng đi trên quãng đường đó từ A đến B với vận tốc lớn hơn vận tốc xe tải 5 km/h, nên ô tô đến B sớm hơn xe tải 20 phút. Tính vận tốc xe tải. + Cho nửa đường tròn (O) đường kính AB 2R. Lấy điểm C thuộc nửa đường tròn (O) sao cho CA CB. Gọi H là trung điểm của đoạn thẳng OB, đường thẳng vuông góc với AB tại H cắt dây CB và tia AC lần lượt tại D và E. a) Chứng minh rằng bốn điểm A, C, D, H cùng thuộc một đường tròn. b) Gọi I là trung điểm DE. Chứng minh rằng IC là tiếp tuyến của nửa đường tròn (O). c) Chứng minh rằng 2 AC AE 3R.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thái Nguyên; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thái Nguyên : + Cho tam giác ABC vuông tại A, đường cao AH. Biết BC 10cm và 3 sin 5 ACB. Tính độ dài các đoạn thẳng AB AC và AH. + Trong mặt phẳng tọa độ Oxy, cho điểm M(1;2). Xác định vị trí tương đối của đường tròn (M;1) và các trục toạ độ. + Một nhóm học sinh dự định làm 360 chiếc mũ chắn giọt bắn trong một thời gian nhất định để ủng hộ các địa phương trong công tác phòng, chống dịch bệnh COVID-19. Thực tế, mỗi ngày nhóm học sinh làm vượt mức 12 chiếc mũ so với dự định. Vì vậy, nhóm đã làm xong trước thời gian dự định hai ngày và làm thêm đưọc 4 chiếc mũ. Hỏi theo dự định, mỗi ngày nhóm học sinh làm được bao nhiêu chiếc mũ ?