Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 Toán 12 năm 2019 - 2020 sở GDKHCN Bạc Liêu

Sáng thứ Tư ngày 20 tháng 05 năm 2020, sở Giáo dục – Khoa học và Công nghệ tỉnh Bạc Liêu đã tổ chức kỳ thi kiểm tra chất lượng học kì 2 môn Toán 12 năm học 2019 – 2020. Đề thi học kì 2 Toán 12 năm 2019 – 2020 sở GDKHCN Bạc Liêu gồm có 07 trang, đề được biên soạn theo dạng đề trắc nghiệm 100% với 50 câu hỏi và bài toán, nội dung đề thuộc các chương: Nguyên hàm, tích phân và ứng dụng, Số phức và Phương pháp tọa độ trong không gian; thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 123, 207, 345, 469. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 sở GDKHCN Bạc Liêu : + Hình (H) giới hạn bởi các đường y = f(x), x = a, x = b (với a < b) và trục Ox. Khi quay (H) quanh trục Ox ta được một khối tròn xoay có thể tích tính bằng công thức sau? + Cho f(x), g(x) là các hàm số liên tục và xác định trên R. Trong các mệnh đề sau, mệnh đề nào sai? [ads] + Cho số phức z thỏa mãn |z − 1| ≤ 2. Tập hợp các điểm biểu diễn số phức w = (1 + i√8)z – 1 là hình tròn có tâm và bán kính lần lượt là? + Trong không gian Oxyz, cho mặt cầu (S) có tâm I (1;-2;3) và tiếp xúc với mặt phẳng (P): 2x + 9y – 9z – 123 = 0. Số điểm có tọa độ nguyên thuộc mặt cầu (S) là? + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y + 1 = 0 và đường thẳng d: x = 2 – t, y = t, z = m + t. Tổng các giá trị của m để d cắt (S) tại hai điểm phân biệt A và B sao cho các mặt phẳng tiếp diện của (S) tại A và B vuông góc với nhau bằng.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 12 năm 2019 - 2020 trường THPT Lê Quý Đôn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 132, 356, 525. Trích dẫn đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT Lê Quý Đôn – Quảng Ngãi : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 1 và điểm A(0;0;2). Đường thẳng d thay đổi qua A luôn cắt mặt cầu (S) tại hai điểm B và C sao cho B là trung điểm của AC, biết rằng tập hợp điểm B luôn nằm trên một đường tròn cố định. Tính bán kính đường tròn đó. [ads] + Cho số phức z = 2 + i. Trong mặt phẳng Oxy, gọi A và B lần lượt là điểm biểu diễn của số phức z và z¯. Tính diện tính tam giác OAB (với O là gốc tọa độ). + Trong mặt phẳng Oxy, tập hợp các điểm biểu diễn số phức z thỏa |2z/(1 – i) + 2 + 4i| = |z(1 – i) + 6 + 4i| là đường thẳng có phương trình ax + by – 4 = 0. Tính a^2 + b^2.
Đề thi học kỳ 2 Toán 12 năm 2019 - 2020 trường Phổ thông Năng khiếu - TP HCM
Ngày … tháng 06 năm 2020, trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh tổ chức kỳ thi học kỳ 2 môn Toán học lớp 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM mã đề 628 gồm 30 câu trắc nghiệm (06 điểm) và 04 câu tự luận (04 điểm), thời gian làm bài 90 phút, không kể thời gian phát đề. Trích dẫn đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường Phổ thông Năng khiếu – TP HCM : + Gọi (D) là miền phẳng giới hạn bởi (C) : y = 2√log2(x), trục Ox và đường thẳng x = 5. Tính thể tích V của vật thể tròn xoay sinh bởi (D) khi (D) quay quanh trục Ox. + Trong mặt phẳng phức Oxy, xem tập hợp E các số phức z thỏa |z − 5i| ≤ 3. Nếu trong tập E, số phức z0 có môđun nhỏ nhất thì phần ảo của z0 bằng bao nhiêu? [ads] + Trong mặt phẳng phức Oxy, tập hợp các điểm biểu diễn số phức z sao cho z2 là số thuần ảo là hai đường thẳng d1, d2. Góc α giữa hai đường thẳng d1, d2 là bao nhiêu?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trần Khai Nguyên - TP HCM
Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Gọi M và N lần lượt là các điểm biểu diễn của z1, z2 trên mặt phẳng tọa độ, I là trung điểm MN, O là gốc tọa độ (ba điểm O, M, N phân biệt và không thẳng hàng). Mệnh đề nào sau đây là đúng? + Trong không gian với hệ tọa độ Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = a và x = b (a < b). Gọi S(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a =< x =< b. Giả sử hàm số y = S(x) liên tục trên đoạn [a;b]. Khi đó, thể tích V của vật thể (H) được cho bởi công thức? + Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) nằm trên mặt cầu (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).
Đề thi HK2 Toán 12 năm học 2019 - 2020 trường THPT Tân Phú - Đồng Nai
Ngày … tháng 06 năm 2020, trường THPT Tân Phú, huyện Định Quán, tỉnh Đồng Nai tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Tân Phú – Đồng Nai gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Tân Phú – Đồng Nai : + Cho hình vuông ABCD cạnh a. Trên hai tia Bx, Dy vuông góc với mặt phẳng (ABCD) và cùng chiều lần lượt lấy hai điểm M và N sao cho BM = a/4; DN = 2a. Tính góc x giữa hai mặt phẳng (AMN) và (CMN). [ads] + Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + y – 2z + m = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y – 6z – 2 = 0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4√3. + Trong mặt phẳng tọa độ Oxy. Gọi A, B, C lần lượt là các điểm biểu diễn số phức -1 – 2i, 4 – 4i, -3i. Số phức biểu diễn trọng tâm tam giác ABC là?