Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1

Nội dung Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 bao gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, với đáp án và lời giải chi tiết. Trong đề thi có các bài toán như sau: Hai vòi nước cùng chảy vào một cái bể và trong 5 giờ bể sẽ đầy. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì bể sẽ được 2/3 nước. Hỏi nếu mỗi vòi chảy một mình, thì trong bao lâu bể mới đầy? Cho đường tròn (O), M là một điểm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn và bán kính của đường tròn đó. b) PR = RS. Đề thi cung cấp bài toán thú vị, đòi hỏi sự tư duy logic và lập luận chặt chẽ của thí sinh. Hy vọng qua thử sức với đề thi này, các thí sinh có thể nắm vững kiến thức và kỹ năng cần thiết để chuẩn bị cho kỳ thi chính thức sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho phương trình bậc hai x2 – 2mx + 2m – 3 = 0 (m là tham số). a. Giải phương trình khi m = 0,5. b. Tìm m để phương trình có hai nghiệm trái dấu. + Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn (O) tâm O đường kính BC, đường thẳng qua O vuông góc với BC cắt AC tại D. a. Chứng minh rằng tứ giác ABOD nội tiếp. b. Tiếp tuyến tại điểm A với đường tròn (O) cắt đường thẳng BC tại điểm P, cho PB = BO = 2cm. Tính độ dài đoạn PA và số đo góc APC. + Cây bạch đàn mỗi năm cao thêm 1m, cây phượng mỗi năm cao thêm 50cm. Lúc mới vào trường học, cây bạch đàn cao 1m và cây phượng cao 3m. Giả sử rằng tốc độ tăng trưởng chiều cao của hai loại cây không đổi qua các năm. a. Viết hàm số biểu diễn chiều cao mỗi loại cây theo số năm tính từ lúc mới vào trường. b. Sau bao nhiêu năm so với lúc mới vào trường thì cây bạch đàn sẽ cao hơn cây phượng?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O). Gọi E là điểm đối xứng của B qua AC và F điểm đối xứng của C qua AB. Đường thẳng BE cắt đường thẳng CF tại H. a) Chứng minh các tứ giác AHBF và AHCE là tứ giác nội tiếp. b) Đường tròn ngoại tiếp các tam giác ABE và ACF cắt nhau tại điểm thứ hai là D. Chứng minh F, B, D thẳng hàng và DA là tia phân giác của góc EDF. c) Gọi P, Q lần lượt là tâm đường tròn ngoại tiếp các tam giác ABE, ACF. Chứng minh sáu điểm B, C, D, O, P, Q cùng thuộc một đường tròn tâm I và giao điểm (khác D) của đường thẳng AD với đường tròn (I) là trực tâm tam giác APQ. d) Giả sử H thuộc đường tròn (I). Chứng minh các đường thẳng AI, DH, BC, PQ đồng quy. + Cho p là một số nguyên tố. a) Chứng minh nếu p lẻ và tồn tại số nguyên x sao cho (x + 1) chia hết cho p thì (p – 1) chia hết cho 4. Chứng minh 2023p + 23^p – 24 không là số chính phương. + Người ta tô màu mỗi điểm trên mặt phẳng bởi một trong hai màu đỏ hoặc xanh. Chứng minh: a) Tồn tại một tam giác vuông cân có ba đỉnh được tô cùng màu. b) Tồn tại một tam giác vuông có cạnh huyền bằng 2, một cạnh góc vuông bằng 1 và ba đỉnh được tô cùng màu.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Tây Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Tây Ninh; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Tây Ninh : + Cho parabol (P): y = 2×2 và đường thẳng (d): y = (7 – m)x + 3m – 3. Tìm các giá trị nguyên âm của m để (P) cắt (d) tại hai điểm phân biệt có hoành độ nhỏ hơn 4. + Cho đường tròn (O) đường kính AB. Trên (O) lấy hai điểm C, D nằm khác phía đối với AB và CD không đi qua O. Gọi E là giao điểm của AC và BD, F là giao điểm của AD và BC, I là trung điểm đoạn thẳng EF. Chứng minh IC là tiếp tuyến của (O). + Cho đường tròn (O) và điểm M nằm ngoài (O), vẽ tiếp tuyến MA và cát tuyến MBC không đi qua O (MB < MC). Gọi H là hình chiếu vuông góc của A trên MO. a) Chứng minh: Tứ giác BHOC nội tiếp. b) Vẽ đường thẳng qua B song song với AC cắt các đường thẳng MA, AH lần lượt tại K, I. Chứng minh KB = BI.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Lào Cai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào 03/06/2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai : + Một cửa hàng nhập 10 sản phẩm gồm hai loại A và B về bán. Biết mỗi sản phẩm loại A nặng 9kg, mỗi sản phẩm loại B nặng 10kg và tổng khối lượng của tất cả các sản phẩm là 95kg. Hỏi cửa hàng đã nhập bao nhiêu sản phẩm mỗi loại? + Cho tam giác ABC vuông ở A, có đường cao AH. Biết góc ABC = 60°, độ dài BC = 40cm. a) Tính độ dài cạnh AB. b) Gọi điểm K thuộc đoạn thẳng AC sao cho HK vuông góc với AC. Tính độ dài đoạn HK. + Cho tam giác ABC có ba góc nhọn (BA < BC) và nội tiếp đường tròn tâm O. Hai tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại I. Tia BI cắt đường tròn (O) tại điểm thứ hai là D. a) Chứng minh rằng tứ giác OAIC nội tiếp. b) Chứng minh IC2 = IB.ID. c) Gọi M là trung điểm của BD. Tia CM cắt đường tròn (O) tại điểm thứ hai là E. Chứng minh rằng: MO vuông góc AE.