Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán khối đa diện bằng sơ đồ tư duy - Ngụy Như Thái

Tài liệu gồm 46 trang hướng dẫn phương pháp giải toán khối đa diện bằng sơ đồ tư duy, đây là sáng kiến kinh nghiệm của thầy Ngụy Như Thái (Giáo viên trường THPT An Phước). Thực tế giảng dạy cho thấy môn Toán học trong trường phổ thông là một trong những môn học khó, phần lớn các em học môn Toán rất yếu đặc biệt là hình học không gian, nếu không có những bài giảng và phương pháp dạy môn Hình học phù hợp đối với thế hệ học sinh thì dễ làm cho học sinh thụ động trong việc tiếp thu, cảm nhận. Đã có hiện tượng một số bộ phận học sinh không muốn học Hình học, ngày càng xa rời với giá trị thực tiễn của Hình học. Nhiều giáo viên chưa quan tâm đúng mức đối tượng giáo dục, chưa đặt ra cho mình nhiệm vụ và trách nhiệm nghiên cứu, hiện tượng dùng đồng loạt cùng một cách dạy, một bài giảng cho nhiều lớp, nhiều thế hệ học trò vẫn còn nhiều. Do đó phương pháp ít có tiến bộ mà người giáo viên đã trở thành người cảm nhận, truyền thụ tri thức một chiều, còn học sinh không chủ động trong quá trình lĩnh hội tri thức – kiến thức Hình học làm cho học sinh không thích học môn Hình học. Xuất phát từ mục đích dạy – học phát huy tính tích cực chủ động sáng tạo của học sinh nhằm giúp các em xây dựng các kiến thức, kỹ năng, thái độ học tập cần thiết, kỹ năng tư duy, tổng kết, hệ thống lại những kiến thức, vấn đề cơ bản vừa mới lĩnh hội giúp các em củng cố bước đầu, khắc sâu trọng tâm bài học, thì sơ đồ tư duy là một biểu đồ được sử dụng để thể hiện từ ngữ, ý tưởng, nhiệm vụ hay các mục được liên kết và sắp xếp tỏa tròn quanh từ khóa hay ý trung tâm. Sơ đồ tư duy là một phương pháp đồ họa thể hiện ý tưởng và khái niệm trong các bài học mà giáo viên cần truyền đạt, làm rõ các chủ đề qua đó giúp các em hiểu rõ hơn và nắm vững kiến thức một cách có hệ thống. [ads] Để cho học sinh có hứng thú trong học tập bộ môn Hình học hơn, tôi có một ý tưởng là: Dùng sơ đồ tư duy hệ thống kiến thức chương 1 – Thể tích khối đa diện –Hình học 12 với mong muốn thay đổi cách giảng dạy truyền thụ tri thức một chiều sang cách tiếp cận kiến tạo kiến thức và suy nghĩ. Ý tưởng là sơ đồ tư duy được xây dựng theo quá trình từng bước khi người dạy và người học tương tác với nhau. Vì đây là một hoạt động vừa mang tính phân tích vừa mang tính nghệ thuật nó làm cho học sinh gợi nhớ các kiến thức vừa mới học hoặc đã được học từ trước. Để thực hiện được điều như trên, bản thân tôi xác định phải luôn bám sát các nguồn tư liệu như: chuẩn kiến thức, kĩ năng; sách giáo khoa; sách giáo viên và các sách tham khảo khác. Ngoài ra còn luôn chuẩn bị một hệ thống câu hỏi và bài tập dựa trên mục tiêu của từng bài, từng chương cụ thể, giúp học sinh định hướng và nắm được kiến thức trọng tâm bài học. Thông qua đó học sinh nắm vững kiến thức cũ, lĩnh hội kiến thức mới nhanh hơn.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm thể tích khối chóp
Tài liệu gồm 48 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối chóp, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Thể tích khối chóp có đường cao sẵn có. Dạng 2: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3: Thể tích khối chóp đều. + Khối chóp tam giác đều. + Khối chóp tứ giác đều. Dạng 4: Thể tích một số khối chóp đặc biệt. + Khối chóp có các cạnh bên bằng nhau. + Khối chóp có các cạnh bên tạo với đáy các góc bằng nhau. + Khối chóp có các mặt bên đều tạo với đáy các góc bằng nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải
Tài liệu gồm 74 trang, được biên soạn bởi tác giả Phùng Hoàng Em, tuyển tập 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng: Câu 1. Thể tích của một khối chóp có diện tích đáy bằng 4 dm2 và chiều cao bằng 6 dm là? Câu 2. Thể tích của một khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h là? Câu 3. Tính thể tích V của khối lập phương có cạnh bằng 2cm. Câu 4. Tính thể tích khối lăng trụ tam giác đều ABC.A0B0C0 biết tất cả các cạnh của lăng trụ đều bằng a. Câu 5. Tính thể tích V của khối lăng trụ ABC.A0B0C0 biết thể tích của khối chóp C0.ABC bằng a3. Câu 6. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a; AD = 3a. Cạnh bên SA vuông góc với đáy (ABCD) và SA = a. Tính thể tích V của khối chóp S.ABCD. Câu 7. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Tính thể tích khối tứ diện OABC. Câu 8. Gọi V1 là thể tích của khối lập phương ABCD.A0B0C0D0, V2 là thể tích khối tứ diện A0ABD. Hệ thức sào sau đây là đúng? Câu 9. Thể tích khối tứ diện đều cạnh a√3 bằng? Câu 10. Tổng diện tích các mặt của một hình lập phương bằng 150. Thể tích của khối lập phương đó là?
Toàn cảnh khối đa diện và thể tích trong đề THPT môn Toán của Bộ GDĐT (2016 - 2021)
Tài liệu gồm 109 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập 113 bài toán chuyên đề khối đa diện và thể tích khối đa diện trong các đề thi tham khảo, đề thi minh họa và đề thi chính thức THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm 2016 đến năm 2021, có đáp án và lời giải chi tiết; giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 phần Hình học chương 1 và ôn thi tốt nghiệp Trung học Phổ thông môn Toán. Tài liệu được phân chia ra 03 phần cho học sinh dễ theo dõi: phần đề bài (trang 01) để học sinh tự làm, phần bảng đáp án (trang 41) để học sinh dò kết quả và phần đáp án – lời giải chi tiết (trang 42). Trích dẫn tài liệu toàn cảnh khối đa diện và thể tích trong đề thi THPT môn Toán của Bộ GD&ĐT (2016 – 2021): + Câu 25 – MĐ 102 – BGD&ĐT – Năm 2016 – 2017: Mặt phẳng AB C chia khối lăng trụ ABC A B C thành các khối đa diện nào? Ⓐ. Một khối chóp tam giác và một khối chóp ngũ giác. Ⓑ. Một khối chóp tam giác và một khối chóp tứ giác. Ⓒ. Hai khối chóp tam giác. Ⓓ. Hai khối chóp tứ giác. + Câu 45 – MĐ 102 – BGD&ĐT – Đợt 2 – Năm 2019 – 2020: Cho hình chóp đều S ABCD có cạnh đáy bằng 4a, cạnh bên bằng 2 3a và O là tâm của đáy. Gọi M N P và Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD và SDA. Thể tích của khối chóp O MNPQ bằng? Gọi E F K H lần lượt là trung điểm của AB BC CD DA và M N P Q lần lượt là hình chiếu vuông góc của O trên SE SF SK SH M N P Q lần lượt là hình chiếu vuông góc của O trên các mặt phẳng SAB SBC SCD SDA. Ta có 2 2 2 2 SO SD OD a a a OE OF OK OH 2 3 2 2 2 các tam giác SOE SOF SOK SOH vuông cân tại O và bằng nhau nên M N P và Q lần lượt là trung điểm của của SE SF SK SH MNPQ là hình vuông cạnh a 2. Mặt khác ta có OM ON OP OQ a 2 O MNPQ là hình chóp đều có tất cả các cạnh bằng a 2 nên có đường cao bằng 2 2 1 a a a. Khi đó thể tích của khối chóp O MNPQ bằng 3 1 2 2 3 3. + Câu 47 – MĐ 101 – BGD&ĐT – Năm 2017 – 2018: Trong không gian Oxyz, cho mặt cầu S có tâm I và đi qua điểm A. Xét các điểm B C D thuộc S sao cho AB AC AD đôi một vuông góc với nhau. Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng? Lời giải: Chọn D. Ta có: Dựng hình hộp chữ nhật ABEC DFGH. I là tâm mặt cầu ngoại tiếp A BCD. I là trung điểm của AG. Dấu đẳng thức xảy ra x y z 6. Vậy max 36 VABCD.
Chuyên đề thể tích khối đa diện - Lê Minh Tâm
Tài liệu gồm 127 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, tổng hợp kiến thức cần nhớ, các dạng toán kèm phương pháp giải và bài tập chuyên đề thể tích khối đa diện, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện và thể tích của chúng và ôn thi tốt nghiệp THPT môn Toán. Mục lục tài liệu chuyên đề thể tích khối đa diện – Lê Minh Tâm: I. KIẾN THỨC CẦN NHỚ II. CÁC DẠNG BÀI TẬP + Dạng toán 1. CHÓP CÓ CẠNH BÊN VUÔNG GÓC VỚI ĐÁY (Trang 6). + Dạng toán 2. CHÓP CÓ MẶT BÊN VUÔNG GÓC VỚI ĐÁY (Trang 8). + Dạng toán 3. CHÓP ĐỀU (Trang 11). + Dạng toán 4. TỶ SỐ THỂ TÍCH (Trang 14). + Dạng toán 5. TỔNG HIỆU THỂ TÍCH (Trang 18). + Dạng toán 6. THỂ TÍCH LĂNG TRỤ ĐỨNG (Trang 24). + Dạng toán 7. THỂ TÍCH LĂNG TRỤ XIÊN (Trang 29). + Dạng toán 8. THỂ TÍCH KHỐI LẬP PHƯƠNG – KHỐI HỘP (Trang 33). + Dạng toán 9. KHỐI ĐA DIỆN ĐƯỢC CẮT RA TỪ KHỐI LĂNG TRỤ (Trang 37). + Dạng toán 10. MAX – MIN THỂ TÍCH (Trang 44). III. BÀI TẬP RÈN LUYỆN IV. BẢNG ĐÁP ÁN THAM KHẢO