Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên - Hà Tĩnh

giới thiệu đến thầy, cô và các em học sinh lớp 12 đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh, đề thi do trường THPT Nguyễn Trung Thiên (Hà Tĩnh) phối hợp cùng trường THPT Nguyễn Đình Liễn (Hà Tĩnh) biên soạn, nhằm giúp các em học sinh khối 12 của trường tiếp tục được rèn luyện nâng cao kiến thức và kỹ năng giải Toán, để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. Đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh mã đề 001 có cấu trúc và độ khó tương đương đề thi tham khảo THPT Quốc gia môn Toán năm 2019, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh : + Người ta cần trồng một vườn hoa (phần tô đậm như hình vẽ). Biết đường viền ngoài và đường viền trong khu đất trồng hoa là hai đường elip. Đường elip ngoài có độ dài trục lớn và độ dài trục bé lần lượt là 10m và 6m. Đường elip trong cách đều elip ngoài một khoảng bằng 2dm (hình vẽ). Kinh phí cho mỗi m2 trồng hoa là 100.000 đồng. Tổng số tiền (đơn vị đồng) dùng để trồng vườn hoa gần với số nào sau đây? [ads] + Đoàn trường THPT Nguyễn Đình Liễn tổ chức giao lưu bóng chuyền học sinh giữa các lớp nhân dịp chào mừng ngày 26/03. Sau quá trình đăng kí có 10 đội tham gia thi đấu từ 10 lớp, trong đó có lớp 10A1 và 10A2, các đội chia làm hai bảng, ký hiệu là bảng A và bảng B, mỗi bảng 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để hai đội 10A1 và 10A2 thuộc hai bảng đấu khác nhau. + Một người gửi tiết kiệm vào ngân hàng 1 tỷ đồng với lãi suất 0.5%/ tháng (lãi tính theo từng tháng và cộng dồn vào gốc). Kể từ lúc gửi sau mỗi tháng vào ngày ngân hàng tính lãi người đó rút 10 triệu đồng để chi tiêu (nếu tháng cuối cùng không đủ 10 triệu đồng thì rút hết). Hỏi trong bao lâu kể từ ngày gửi người đó rút hết tiền trong tài khoản? (Giả sử lãi suất không thay đổi trong suốt quá trình người đó gửi).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2022 môn Toán lần 1 trường THPT Thị xã Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 1 trường THPT Thị xã Quảng Trị; đề thi có đáp án mã đề 001 – 002 – 003 – 004. Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 1 trường THPT Thị xã Quảng Trị : + Trong không gian (Oxyz) cho mặt phẳng P xyz 2 10 0, điểm A(3;0;4) thuộc (P) và đường thẳng 1 2 x t d yt t z t. Gọi ∆ là đường thẳng nằm trong (P) và đi qua A sao cho khoảng cách giữa hai đường thẳng d và ∆ lớn nhất. Véc tơ nào dưới đây là véc tơ chỉ phương của đường thẳng ∆? + Cho hình trụ (T) có O và O’ lần lượt là tâm hai đường tròn đáy. Tam giác ABC nội tiếp trong đường tròn tâm O AB a 2 1 sin 3 ACB và OO′ tạo với mặt phẳng (O’AB) một góc o 30. Thể tích khối trụ (T) bằng? + Hàm số y fx có đồ thị như hình vẽ. Khẳng định nào sau đây đúng? A. Đồ thị hàm số có điểm cực đại là 1 1. B. Đồ thị hàm số có điểm cực tiểu là 1 1. C. Đồ thị hàm số có điểm cực tiểu là 1 1. D. Đồ thị hàm số có điểm cực tiểu là 1 3.
Đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT chuyên ĐH Vinh - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán lần 2 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An; đề thi mã đề 132 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giao đề). Trích dẫn đề thi thử TN THPT 2022 môn Toán lần 2 trường THPT chuyên ĐH Vinh – Nghệ An : + Trong không gian Oxyz, cho mặt phẳng 2 2 16 0 P x y z và mặt cầu 2 2 2 2 1 3 21 S x y z. Một khối hộp chữ nhật H có bốn đỉnh nằm trên mặt phẳng P và bốn đỉnh còn lại nằm trên mặt cầu S. Khi H có thể tích lớn nhất, thì mặt phẳng chứa bốn đỉnh của H nằm trên mặt cầu S là 2 0 Q x by cz d. Giá trị b c d bằng? + Lớp 12A có 22 học sinh gồm 15 nam và 7 nữ. Cần chọn và phân công 4 học sinh lao động trong đó có 1 bạn lau bảng, 1 bạn lau bàn và 2 bạn quét nhà. Có bao nhiêu cách chọn và phân công sao cho trong 4 học sinh đó có ít nhất một bạn nữ? + Cho hàm số y f x có đạo hàm là 2 2 f x x x x 9 9 với mọi x. Có bao nhiêu giá trị nguyên của tham số m để hàm số 3 2 g x f x x m m 3 2 có không quá 6 điểm cực trị?
Đề thi thử tốt nghiệp THPT 2022 môn Toán sở GDĐT Ninh Bình (lần 2)
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Ninh Bình lần thứ hai; đề thi mã đề 001 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Bảy ngày 14 tháng 05 năm 2022. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán sở GD&ĐT Ninh Bình (lần 2) : + Môn bóng đá nam tại SEA Games 31 có 10 đội tuyển tham dự, chia thành 2 bảng, mỗi bảng 5 đội. Ở vòng bảng, hai đội bất kì trong cùng một bảng sẽ gặp nhau một lần. Tính tổng số trận đấu ở vòng bảng môn bóng đá nam tại SEA Games 31? + Trong không gian Oxyz, cho hai điểm A(1; 5; 2) và B(5; 13; 10). Có bao nhiêu điểm I(a; b; c) với a, b, c là các số nguyên sao cho có mặt cầu tâm I đi qua A, B và tiếp xúc với mặt phẳng (Oxy). + Cho hàm số y = f(x) = 16×3 + ax2 + bx + c có đồ thị cắt trục hoành tại ba điểm phân biệt. Biết hàm số g(x) = [f0(x)]2 − 2f00(x)f(x) + [f000(x)]2 có 3 điểm cực trị x1 < x2 < x3 và g (x1) = 2, g (x2) = 5, g (x3) = 1. Diện tích hình phẳng giới hạn bởi đồ thị hàm số h(x) = f(x) g(x) + 1 và trục Ox bằng?
Đề thi thử TNTHPT 2022 môn Toán trường THPT chuyên Ngoại Ngữ - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán trường THPT chuyên Ngoại Ngữ, Đại học Ngoại Ngữ, Đại học Quốc gia Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 05 năm 2022. Trích dẫn đề thi thử TNTHPT 2022 môn Toán trường THPT chuyên Ngoại Ngữ – Hà Nội : + Cho hàm số f(x) = 3×4 + ax3 + bx2 + cx + d (a b c d thuộc R) có ba điểm cực trị là -2; 1 và 2. Gọi y = g(x) là hàm số bậc hai có đồ thị đi qua ba điểm cực trị của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) có giá trị thuộc khoảng? + Cho khối nón đỉnh S có bán kính đáy bằng 3a. Gọi M và N là hai điểm thuộc đường tròn đáy sao cho MN = 2a. Biết thể tích của khối nón là 2pia3, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng (SMN) là? + Trong không gian Oxyz, cho mặt cầu (S): (x – 1)² + (y + 2)² + (z – 3)² = 25 và đường thẳng.Có bao nhiêu điểm M thuộc trục tung, với tung độ là số nguyên, mà từ M kẻ được đến (S) hai tiếp tuyến cùng vuông góc với delta?