Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội

Nội dung Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội Đề kiểm tra cuối học kì 1 (HK1) lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ứng Hòa Hà Nội Ngày 28 tháng 12 năm 2021, trường học ở huyện Ứng Hòa, thành phố Hà Nội sẽ tổ chức kỳ thi khảo sát chất lượng môn Toán cho học sinh lớp 9. Đề kiểm tra này sẽ bao gồm 5 bài toán tự luận, được thiết kế để đánh giá kiến thức và kỹ năng tính toán của học sinh. Thời gian làm bài thi được dành cho học sinh là 90 phút, không tính thời gian giáo viên coi thi hay phát đề. Đề thi sẽ đi kèm với đáp án, lời giải chi tiết và hướng dẫn chấm điểm để giúp học sinh hiểu rõ vấn đề và cải thiện kết quả học tập của mình. Cụ thể, trong đề kiểm tra cuối kì 1 Toán lớp 9 năm 2021 - 2022 của phòng GD&ĐT Ứng Hòa - Hà Nội, có các bài toán đa dạng về các phần như ứng dụng, hàm số, hình học v.v. Mỗi bài toán sẽ đòi hỏi học sinh sử dụng kiến thức và logic để giải quyết vấn đề đưa ra. Ví dụ, một trong những bài toán yêu cầu học sinh tính chiều cao của một cột cờ dựa trên thông tin về bóng trên mặt đất và góc tạo bởi tia nắng mặt trời với mặt đất. Các bài toán khác đề cập đến vẽ đồ thị hàm số, tính độ dài đường chéo của một tam giác, chứng minh tính chất của các hình học v.v. Qua kỳ thi này, học sinh sẽ được đánh giá về khả năng áp dụng kiến thức Toán hiện có vào thực tế và phát triển kỹ năng suy luận, logic. Hy vọng rằng đề thi sẽ giúp học sinh rèn luyện và nâng cao trình độ Toán của mình trong kỳ học kì 1 này.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra cuối học kì 1 Toán 9 năm 2021 - 2022 phòng GDĐT Long Biên - Hà Nội
Thứ Năm ngày 23 tháng 12 năm 2021, phòng Giáo dục và Đào tạo quận Long Biên, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán khối lớp 9 giai đoạn cuối học kì 1 năm học 2021 – 2022. Đề kiểm tra cuối học kì 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Long Biên – Hà Nội gồm 05 trang với 40 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề kiểm tra cuối học kì 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT Long Biên – Hà Nội : + Tâm đường tròn nội tiếp tam giác là: A. Giao điểm của ba đường trung trực của tam giác. B. Giao điểm của ba đường trung tuyến của tam giác. C. Giao điểm của ba đường phân giác của tam giác. D. Giao điểm của ba đường cao của tam giác. + Cho tam giác ABC cân tại A, đường cao AH. Đường vuông góc với AC tại C cắt đường thẳng AH ở D. Các điểm nào sau đây cùng thuộc một đường tròn? + Cho nửa đường tròn O đường kính AB. Từ điểm M trên nửa đường tròn (M khác A B) vẽ tiếp tuyến với nửa đường tròn, cắt các tiếp tuyến tại A và B lần lượt tại C và D (hình vẽ). Khi đó MC MD bằng? + Cho tam giác ABC vuông tại C nội tiếp đường tròn O R có AC R. Gọi K là trung điểm của dây cung BC tiếp tuyến tại B của đường tròn O cắt tia OK tại điểm D nối C với D (hình vẽ). Chọn khẳng định sai trong các khẳng định sau? + Cho hai số thực m 0 và n 0 thay đổi thỏa mãn điều kiện 2 2 m n mn m n 1. Giá trị lớn nhất của biểu thức 3 3 1 1 m n A là?
Đề học kỳ 1 Toán 9 năm 2021 - 2022 phòng GDĐT huyện Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học kỳ 1 môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 12 năm 2021. Trích dẫn đề học kỳ 1 Toán 9 năm 2021 – 2022 phòng GD&ĐT huyện Thanh Trì – Hà Nội : + Cho hàm số: y = (m + 3)x + 2 có đồ thị là đường thẳng (d). a) Với m = 0 thì hàm số trên là hàm bậc nhất đồng biến hay nghịch biến? Tại sao? b) Tìm m để đồ thị hàm số trên đi qua điểm M(-1;3). c) Tìm m để đường thẳng d cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 4 (đơn vị diện tích). + Một cầu trượt trong công viên có độ dốc là 32° và có độ cao AC là 2,4m. Tính độ dài của mặt làm cầu trượt (coi mặt cầu trượt phẳng và làm tròn đến chữ số thập phân thứ hai). + Cho nửa đường tròn (O;R) đường kính BC. Trên nửa mặt phẳng bờ BC chứa nữa đường tròn vẽ tiếp tuyến Bx của (O), A là điểm bất kì thuộc nửa đường tròn sao cho AB < AC (A khác B, A khác C). Tiếp tuyến tại A của (O) cắt tia Bx tại D. a) Chứng minh 4 điểm A, D, B, O cùng thuộc một đường tròn. b) Tia CA cắt Bx tại E. Chứng minh rằng BA vuông góc CE và CA.CE = 4R2. c) Gọi H là hình chiếu vuông góc của A trên BC, kẻ OI vuông góc với AC, OD cắt AB tại điểm K. Chứng minh rằng IH là tiếp tuyến của đường tròn ngoại tiếp tam giác AHB và ba đoạn thẳng AH, KI, CD đồng quy.
Đề học kỳ 1 Toán 9 năm 2021 - 2022 trường THCS Hoàng Hoa Thám - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra học kỳ 1 môn Toán 9 năm học 2021 – 2022 trường THCS Hoàng Hoa Thám, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày … tháng 12 năm 2021.
Đề kiểm tra học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Thứ Hai ngày 28 tháng 12 năm 2020, phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng học tập môn Toán lớp 9 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề kiểm tra học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội được biên soạn theo hình thức đề tự luận, đề gồm có 01 trang với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội : + Một cột cờ vuông góc với mặt đất. Tại thời điểm cột cờ có bóng dài 15m thì tia nắng của mặt trời tạo với mặt đất một góc là 35°. Tính chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho hàm số y = (m – 1)x + 4 (m là tham số và m khác 1) có đồ thị là đường thẳng (d). a) Tìm m để đường thẳng (d) song song với đường thẳng (d’): y = 2x – 3. Hãy vẽ đồ thị hàm số với giá trị m vừa tìm được. b) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) bằng 2. + Cho nửa đường tròn (O;R), đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ tiếp tuyến Bx với (O). Điểm M di động trên tia Ax (M khác B), AM cắt nửa đường tròn (O) tại điểm N (N khác A). Kẻ OE vuông góc với AN tại E. a) Chứng minh các điểm E, O, B, M cùng thuộc đường tròn đường kính OM. b) Tiếp tuyến của nửa đường tròn (O) tại N cắt tia OE tại K và cắt MB tại D. Chứng minh KA là tiếp tuyến của nửa đường tròn (O). c) Chứng minh rằng KA.DB không đổi khi điểm M di động trên tia Bx. d) Gọi H là giao điểm của AB và DK, kẻ OF vuông góc AB (F thuộc DK). Chứng minh BD/DF + DF/HF = 1.