Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 2 Toán 9 năm 2019 - 2020 phòng GDĐT Hoàng Mai - Hà Nội

Thứ Năm ngày 04 tháng 06 năm 2020, phòng Giáo dục và Đào tạo quận Hoàng Mai, thành phố Hà Nội tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 9 năm học 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội gồm 05 bài toán dạng tự luận, đề thi có 01 trang, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học kỳ 2 Toán 9 năm 2019 – 2020 phòng GD&ĐT Hoàng Mai – Hà Nội : + Quãng đường AB dài 6km. Một người đi xe đạp từ A đến B với vận tốc không đổi. Khi từ B trở về A người đó giảm vận tốc 3km/h so với lúc đi từ A đến B. Biết thời gian lúc đi ít hơn thời gian lúc về là 6 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. [ads] + Một hộp sửa hình trụ có chiều cao là 12cm, bán kính đáy là 4cm như hình vẽ bên. Tính diện tích vật liệu cần dùng để tạo nên vỏ hộp sữa đó (không tính phần ghép nối). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ đường kính AD của đường tròn (O). Tiếp tuyến tại điểm D của đường tròn (O) cắt đường thẳng BC tại điểm K. Tia KD cắt AB tại điểm M, cắt AC tại điểm N. Gọi H là trung điểm của đoạn thẳng BC. 1) Chứng minh CBD = CDK và KD^2 = KB.KC. 2) Chứng minh tứ giác OHDK nội tiếp và AON = BHD. 3) Chứng minh OM = ON.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề thi học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Trường Tộ – Hà Nội : + Giải bài toán sau bằng cách lập phương trình, hệ phương trình: Một công nhân được giao khoán sản xuất 120 sản phẩm trong thời gian nhất định. Trên thực tế, nhờ hợp lí hóa một số thao tác nên mỗi giờ người đó làm thêm được 3 sản phẩm nữa. Nhờ đó người công nhân hoàn thành công việc sớm hơn 2 giờ. Hỏi mỗi giờ người đó dự định làm bao nhiêu sản phẩm? + Cho đường tròn (O; R) và một đường thẳng d cắt (O) tại C, D. Lấy điểm M bất kỳ trên d sao cho MC > MD và điểm M nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB với đường tròn (O); A, B là các tiếp điểm. Gọi H là trung điểm CD. Chứng minh: a) Năm điểm A, B, M, O, H cùng thuộc một đường tròn. b) Chứng minh MA2 = MC.MD và HM là tia phân giác của AHB. c) Vẽ DK // AM (K thuộc AB). Chứng minh HK // AC. + Cho x, y là những số thực thỏa mãn điều kiện x2 + y2 = 1, tìm giá trị lớn nhất của biểu thức P = x/(y + 2).