Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội

Nội dung Đề thi thử Toán vào lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội Đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội Đề thi thử Toán vào lớp 10 lần 2 năm 2021 của trường chuyên Đại học Sư phạm Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 90 phút. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2021 trường chuyên Đại học Sư phạm Hà Nội: Một nhà máy theo kế hoạch cần sản xuất 20000 hộp khẩu trang trong thời gian quy định, với số hộp khẩu trang sản xuất được mỗi ngày bằng nhau. Trong quá trình sản xuất, nhà máy đã vượt kế hoạch mỗi ngày 100 hộp khẩu trang. Điều này đã giúp nhà máy hoàn thành công việc trước thời hạn 10 ngày. Hỏi theo kế hoạch, mỗi ngày nhà máy cần sản xuất bao nhiêu hộp khẩu trang? Cho phương trình x2 + (1 - m)x - 2m - 4 = 0 với m là tham số. Hãy chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của tham số m. Sau đó, tính giá trị của T = (x1 + 2)(x2 + 2). Được cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Gọi M là điểm tùy ý trên cung nhỏ AC. Tia DM cắt các đường thẳng AB, AC và BC lần lượt tại N, P, và Q. Hãy chứng minh rằng tứ giác AOCH nội tiếp và tia HO là tia phân giác của góc AHC. Tiếp theo, chứng minh PA/PC = HA/HC và cuối cùng, chứng minh điều đó. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức đến từ nhiều phần khác nhau của môn Toán để giải quyết các vấn đề phức tạp. Việc giải quyết các bài toán này sẽ giúp học sinh rèn luyện tư duy logic, khả năng giải quyết vấn đề và làm việc độc lập.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2021 2022 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2021-2022 sở GD&ĐT Hà Nội Đề tuyển sinh môn Toán (chuyên Toán) năm 2021-2022 sở GD&ĐT Hà Nội Ngày 14 tháng 06 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) cho năm học 2021 - 2022. Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) của sở GD&ĐT Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút. Đề thi đi kèm đáp án và lời giải chi tiết do các thành viên CLB Toán Lim thực hiện, bao gồm Nguyễn Duy Khương, Hà Huy Khôi, Trần Quang Độ, Nguyễn Đức Toàn và Nguyễn Văn Hoàng. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2021 - 2022 sở GD&ĐT Hà Nội: Chứng minh rằng với các số thực không âm a, b, c thỏa mãn a + b + c = 5, ta có 2a + 2ab + abc ≤ 18. Trong tam giác nhọn ABC nội tiếp đường tròn (O), với ∠BAC = 60° và AB < AC. Các đường thẳng BO, CO cắt AC, AB tương ứng tại M, N. F là điểm chính giữa cung BC lớn. Chứng minh rằng năm điểm A, N, O, M và F đều nằm trên cùng một đường tròn. Gọi P, Q lần lượt là giao điểm thứ hai của hai tia FN, FM với đường tròn (O). J là giao điểm của BC và PQ. Chứng minh rằng tia AJ là tia phân giác của ∠BAC. K là giao điểm của OJ và CF, chứng minh AB vuông góc với AK. Cho tập hợp A gồm 100 phần tử của tập hợp {1,2,...,178}. Chứng minh rằng A chứa hai số tự nhiên liên tiếp và với mọi n thuộc {2,3,4,...,22},
Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GD&ĐT Bình Định Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GD&ĐT Bình Định Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm học 2021 - 2022 của sở GD&ĐT Bình Định. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 11 tháng 06 năm 2021. Hãy chuẩn bị tâm lý và kiến thức một cách chu đáo để vượt qua thử thách này!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Thuận
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Bình Thuận Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bình Thuận Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 sở GD&ĐT Bình Thuận Sytu xin gửi đến quý thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021 - 2022 của Sở Giáo dục và Đào tạo Bình Thuận. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 12 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 của Sở GD&ĐT Bình Thuận gồm các câu hỏi sau: Cho x, y, z là các số thực dương thỏa mãn x + y + z = 3. Chứng minh rằng? Cho đường tròn tâm O, đường kính AB. Trên đường tròn lấy điểm D khác A và B sao cho mDAB > 60°. Trên đường kính AB lấy điểm C khác A, B và kẻ HC vuông góc với AD tại H. Phân giác trong của góc DAB cắt đường tròn tại E (E khác A) và cắt HC tại F.DF cắt đường tròn tại điểm thứ hai N. a) Chứng minh ba điểm N, C, E thẳng hàng. b) Cho AD = BC, chứng minh DN đi qua trung điểm của AC. Viết lên bảng 2021 số. Thực hiện thao tác: xóa ba số x, y, z bất kì trên bảng và viết lại số x + y + z + xy + yz + zx + xyz. Tiếp tục thực hiện cho đến khi trên bảng chỉ còn một số. Hỏi đó là số nào? Đề tuyển sinh môn Toán (chuyên) năm 2021 - 2022 của Sở GD&ĐT Bình Thuận thú vị và đa dạng, giúp các em học sinh rèn luyện và phát triển kỹ năng giải quyết vấn đề một cách logic và sáng tạo.
Đề tuyển sinh môn Toán (chung) năm 2021 2022 sở GD ĐT Bến Tre
Nội dung Đề tuyển sinh môn Toán (chung) năm 2021 2022 sở GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2021-2022 sở GD&ĐT Bến Tre Đề tuyển sinh môn Toán (chung) năm 2021-2022 sở GD&ĐT Bến Tre Sytu xin gửi đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT công lập môn Toán (chung) năm học 2021-2022 sở GD&ĐT Bến Tre. Đề thi bao gồm đáp án và lời giải chi tiết để hỗ trợ các em trong việc ôn tập và chuẩn bị cho kỳ thi sắp tới. Trích đoạn đề tuyển sinh lớp 10 môn Toán (chung) năm 2021-2022 sở GD&ĐT Bến Tre: Cho đường tròn O và điểm M sao cho OM = 6cm. Từ điểm M kẻ hai tiếp tuyến MA và MB đến đường tròn O (A và B là các tiếp điểm). Trên đoạn thẳng OA lấy điểm D (D khác A và O), dựng đường thẳng vuông với OA tại D và cắt MB tại E. Chứng minh tứ giác ODEB nội tiếp đường tròn. Tứ giác ADEM là hình gì? Vì sao? Gọi K là giao điểm của đường thẳng MO và O sao cho O nằm giữa M và K. Chứng minh tứ giác AMBK là hình thoi. Dựa vào hình bên, hãy: Viết tọa độ của các điểm M và P. Xác định hoành độ điểm N. Xác định tung độ điểm Q. Cho đường thẳng 5x + 6y = 2021 + d y m x với m là tham số. Điểm O(0;0) có thuộc đường thẳng không? Vì sao? Tìm giá trị của m để đường thẳng d song song với y = x + 4. File WORD (dành cho quý thầy, cô): [link download]