Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Can Lộc - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi giao lưu học sinh giỏi cấp trường môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Can Lộc, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Can Lộc – Hà Tĩnh : + Có 8 đội bóng được vào chung kết giải bóng chuyền học sinh THCS của huyện Can Lộc năm 2023. Hỏi nếu tổ chức thi đấu vòng tròn một lượt (2 đội bất kỳ chỉ gặp nhau 1 trận) để tính điểm thì có tất cả bao nhiêu trận đấu? + Cho tam giác ABC có M là trung điểm của AC. AD, BM, CE đồng quy tại K (D thuộc BC, E thuộc AB và K nằm trong tam giác ABC). Biết diện tích tam giác AKE bằng 10 2 cm, diện tích tam giác BKE bằng 20 2 cm. Tính diện tích tam giác ABC. + Cho điểm O nằm trong tam giác ABC, các tia AO, BO, CO cắt các cạnh BC, CA, AB của tam giác theo thứ tự tại D, E, F. Tìm vị trí điểm O để OA OB OC P OD OE OF có giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó?

Nguồn: toanmath.com

Đọc Sách

Đề chọn HSG Toán 8 năm 2015 - 2016 phòng GDĐT huyện Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề chọn HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT huyện Sơn Dương – Tuyên Quang; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề chọn HSG Toán 8 năm 2015 – 2016 phòng GD&ĐT huyện Sơn Dương – Tuyên Quang : + Cho điểm M di động trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD, BMEF. a) Chứng minh rằng: AE vuông góc BC. b) Gọi H là giao điểm của AE và BC. Chứng minh ba điểm D, H, F thẳng hàng. c) Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB. + Rút gọn biểu thức. + Cho a; b; c là ba số đôi một khác nhau thỏa mãn. Tính giá trị của biểu thức: P.
Đề giao lưu HSG huyện Toán 8 năm 2015 - 2016 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Cho tam giác ABC nhọn (AB < AC). Các đường cao AE, BF, CG cắt nhau tại H. Gọi M là trung điểm của BC, qua H vẽ đường thẳng a vuông góc với HM, a cắt AB, AC lần lượt tại I và K. a) Chứng minh tam giác ABC đồng dạng với tam giác EFC. b) Qua C kẻ đường thẳng b song song với đường thẳng IK, b cắt AH, AB theo thứ tự tại N và D. Chứng minh NC = ND và HI = HK. c) Chứng minh. + Tìm đa thức f(x) biết rằng: f(x) chia cho x – 2 dư 10, f(x) chia cho x + 2 dư 26, f(x) chia cho x2 – 4 được thương là -5x và còn dư. + Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng.
Đề học sinh giỏi huyện Toán 8 năm 2015 - 2016 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2015 – 2016 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác ABC vuông tại A (AC > AB), đường cao AH (H BC). Trên tia đối của tia HB lấy điểm D sao cho HD = HA. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. 1.Chứng minh CD.CB = CA.CE 2. Tính số đo góc BEC. 3. Gọi M là trung điểm của đoạn BE. Tia AM cắt BC tại G. Chứng minh: GB HD BC AH HC. + Cho các số a, b, c thỏa mãn a + b + c = 32. Tìm giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. + Chứng minh biểu thức: A = 4a(a + b)(a + b + c)(a + c) + b2 c2 0 với mọi a, b, c.
Đề giao lưu HSG Toán 8 năm 2014 - 2015 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề giao lưu HSG Toán 8 năm 2014 – 2015 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác nhọn ABC (AB < AC) có đường cao AH sao cho AH = HC. Trên AH lấy một điểm I sao cho HI = BH. Gọi P và Q là trung điểm của BI và AC. Gọi N và M là hình chiếu của H trên AB và IC ; K là giao điểm của đường thẳng CI với AB; D là giao điểm của đường thẳng BI với AC. a) Chứng minh I là trực tâm của tam giác ABC. b) Tứ giác HNKM là hình vuông. c) Chứng minh bốn điểm N, P, M, Q thẳng hàng. + Cho x là số nguyên. Chứng minh rằng biểu thức M = (x + 1)(x + 2)(x + 3)(x + 4) + 1 là bình phương của một số nguyên. + Cho x, y, z là các số nguyên thỏa mãn: x + y + z chia hết cho 6. Chứng minh M = (x + y)(x + z)(y + z) – 2xyz chia hết cho 6.