Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ba Vì Hà Nội

Nội dung Đề thi chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Ba Vì Hà Nội Bản PDF - Nội dung bài viết Đề thi chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Ba Vì Hà Nội Đề thi chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Ba Vì Hà Nội Chúng tôi xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi rà soát chất lượng môn Toán lớp 9 năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội. Kỳ thi đã diễn ra vào ngày 18 tháng 05 năm 2022. Dưới đây là một số câu hỏi trong đề thi chất lượng Toán lớp 9 năm 2021-2022 của phòng GD&ĐT Ba Vì - Hà Nội: 1. Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một công nhân phải hoàn thành 60 sản phẩm trong một thời gian quy định. Nhưng do cải tiến kĩ thuật, mỗi giờ người công nhân đó đã làm thêm được 2 sản phẩm. Vì vậy công nhân đó đã hoàn thành kế hoạch sớm hơn giờ và còn làm thêm được 3 sản phẩm nữa. Hỏi theo kế hoạch, mỗi giờ người đó phải làm bao nhiêu sản phẩm? 2. Để phục vụ sản xuất hàng loạt tượng đồng Thánh Gióng, người ta đã tiến hành đo thể tích của tượng bằng cách thả chìm tượng vào một thùng nước hình trụ có bán kính đáy là 6 cm. Tính thể tích của tượng đồng biết khi thả chìm tượng vào thùng nước, lượng nước trong thùng dâng cao lên 5cm (kết quả làm tròn đến chữ số thập phân thứ nhất và lấy pi = 3,14). 3. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm) và đường kính BC. Trên đoạn CO lấy điểm I (I khác C và I khác O). Đường thẳng AI cắt (O) tại hai điểm D và E (D nằm giữa A và E). Gọi H là trung điểm của đoạn DE. 1. Chứng minh bốn điểm A, B, O, H cùng nằm trên một đường tròn. 2. Chứng minh AE BE. 3. Đường thẳng d đi qua điểm E song song với AO, d cắt BC tại điểm K. Chứng minh HK đồng quy với DC.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL giữa kì 2 Toán 9 năm 2018 - 2019 phòng GDĐT Hà Đông - Hà Nội
Vừa qua, phòng Giáo  dục và Đào tạo quận Hà Đông, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng giữa học kì 2 môn Toán dành cho học sinh khối lớp 9, nhằm kiểm tra kiến thức môn Toán của học sinh lớp 9 trong giai đoạn từ đầu đến giữa học kỳ 2 năm học 2018 – 2019. Đề KSCL giữa kì 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề KSCL giữa kì 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hà Đông – Hà Nội : + Cho Parabol (P): y = -x^2 và đường thẳng (d): y = 2x – 3. a) Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ. b) Tìm toạ độ giao điểm của (P) và (d). [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ sản xuất cũng nhận chung được một đơn hàng, nếu hai tổ cùng làm thì sau 15 ngày sẽ xong. Tuy nhiên, sau khi cùng làm được 6 ngày thì tổ I có việc bận phải chuyển công việc khác, do đó tổ II làm một mình 24 ngày nữa thì hoàn thành đơn hàng. Hỏi nếu làm một mình thì mỗi tổ làm xong trong bao nhiêu ngày? + Cho (O; R), MN là dây không đi qua tâm. C, D là hai điểm bất kì thuộc dây MN (C, D không trùng với M, N). A là điểm chính giữa của cung nhỏ MN. Các đường thẳng AC và AD lần lượt cắt (O) tại điểm thứ hai là E, F. a) Chứng minh góc ACD = AFE và tứ giác CDFE nội tiếp. b) Chứng minh AM^2 = AC.AE. c) Kẻ đường kính AB. Gọi I là tâm đường tròn ngoại tiếp tam giác MCE. Chứng minh M, L, B thẳng hàng.
Đề KSCL giữa HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Bắc Từ Liêm - Hà Nội
Đề KSCL giữa HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Bắc Từ Liêm – Hà Nội được biên soạn nhằm kiểm tra lại các nội dung kiến thức môn Toán lớp 9 đã học từ đầu học kỳ 2 năm học 2018 – 2019 đến nay, đề được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 120 phút, cấu trúc đề khá giống với các đề thi tuyển sinh vào lớp 10 môn Toán. Trích dẫn đề KSCL giữa HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người mua một cái bàn là và một cái quạt điện với tổng số tiền theo giá niêm yết là 750 nghìn đồng. Khi trả tiền người đó được khuyến mãi giảm 10% đối với giá tiền bàn là và 20% đối với giá tiền quạt điện so với giá niêm yết. Vì vậy, người đó phải trả tổng cộng 625 nghìn đồng. Tính giá tiền của cái bàn là và cái quạt điện theo giá niêm yết? [ads] + Cho (O;R) đường kính AB cố định, điểm H nằm giữa hai điểm A và O. Kẻ dây CD vuông góc với AB tại H. Lấy điểm F thuộc cung AC nhỏ; BF cắt CD tại E; AF cắt tia DC tại I. 1) Chứng minh: Tứ giác AHEF là tứ giác nội tiếp. 2) Chứng minh: góc BFH = EAB, từ đó suy ra BE.BF = BH.BA. 3) Đường tròn ngoại tiếp tam giác IEF cắt AB tại điểm thứ hai M. Chứng minh: tam giác HBE đồng dạng với tam giác HIA và điểm M thuộc (O;R). 4) Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất.
Đề KSCL học kỳ 2 Toán 9 năm 2020 - 2021 sở GDĐT Nam Định
Thứ Ba ngày 19 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 THCS giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề KSCL học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT Nam Định được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 08 câu, chiếm 02 điểm, phần tự luận gồm 05 câu, chiếm 08 điểm, thời gian làm bài 120 phút.
Đề KSCL Toán 9 năm 2022 - 2023 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán 9 năm 2022 – 2023 trường THCS Lê Quý Đôn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một tàu tuần tra chạy ngược dòng 60km, sau đó chạy xuôi dòng 48km trên cùng một dòng sông có vận tốc của dòng nước là 2km/h. Tính vận tốc của tàu tuần tra khi nước yên lặng, biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 1 giờ. + Một thùng đựng sơn hình trụ có đường kính đáy là 16cm và chiều cao là 24cm. Tính diện tích vật liệu để tạo nên một vỏ thùng đựng sơn đó (cho biết phần mép nối không đáng kể và lấy π ≈ 3,14). + Cho tam giác ABC (AB < AC) nội tiếp đường tròn tâm O. Đường cao BN và CM cắt nhau tại H. 1) Chứng minh tứ giác BMNC nội tiếp. 2) Chứng minh 2 BM BA CN CA BC. 3) Gọi I là trung điểm của BC. Đường tròn đường kính AH cắt đường tròn (O) tại điểm thứ hai K (K khác A). Chứng minh MI là tiếp tuyến của đường tròn ngoại tiếp ∆AMN và ba điểm K, H, I thẳng hàng?