Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán về phương trình nghiệm nguyên

Tài liệu gồm 405 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về phương trình nghiệm nguyên, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Giải phương trình nghiệm nguyên. 2. Một số lưu ý khi giải phương trình nghiệm nguyên. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ … để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. Các phương pháp thường dùng để giải phương trình nghiệm nguyên là: + Phương pháp dùng tính chất chia hết. + Phương pháp xét số dư từng vế. + Phương pháp sử dụng bất đẳng thức. + Phương pháp dùng tính chất của số chính phương. + Phương pháp lùi vô hạn, nguyên tắc cực hạn. B. MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN I. PHƯƠNG PHÁP DÙNG TÍNH CHIA HẾT + Dạng 1: Phát hiện tính chia hết của một ẩn. + Dạng 2: Phương pháp đưa về phương trình ước số. + Dạng 3: Phương pháp tách ra các giá trị nguyên. II. PHƯƠNG PHÁP SỬ DỤNG TÍNH CHẴN LẺ CỦA ẨN HOẶC XÉT SỐ DƯ TỪNG VẾ + Dạng 1: Sử dụng tính chẵn lẻ. + Dạng 2: Xét tính chẵn lẻ và xét số dư từng vế. III. PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC + Dạng 1: Sử dụng bất đẳng thức cổ điển. + Dạng 2: Sắp xếp thứ tự các ẩn. + Dạng 3: Chỉ ra nghiệm nguyên. + Dạng 4: Sử dụng điều kiện ∆ ≥ 0 để phương trình bậc hai có nghiệm. IV. PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG + Dạng 1: Dùng tính chất về chia hết của số chính phương. + Dạng 2: Biến đổi phương trình về dạng a1.A1^2 + a2.A2^2 + … + an.An^2 = k, trong đó Ai (i = 1 … n) là các đa thức hệ số nguyên, ai là số nguyên dương, k là số tự nhiên. + Dạng 3: Xét các số chính phương liên tiếp. + Dạng 4: Sử dụng điều kiện ∆ là số chính phương. + Dạng 5: Sử dụng tính chất: Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên liên tiếp đó bằng 0. + Dạng 6: Sử dụng tính chất: Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đều là số chính phương. V. PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN + Dạng 1: Phương pháp lùi vô hạn. + Dạng 2: Nguyên tắc cực hạn. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ

Nguồn: toanmath.com

Đọc Sách

108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức
Nội dung 108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức Bản PDF - Nội dung bài viết Tuyển tập 108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức Tuyển tập 108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số Lương Tuấn Đức Tuyển tập sách "108 bài toán giải và biện luận hệ phương trình bậc nhất chứa tham số" được biên soạn bởi thầy Lương Tuấn Đức, với nội dung đa dạng và phong phú. Sách bao gồm các phần sau: Giải hệ phương trình bằng phương pháp cộng đại số: Quy trình giải hệ phương trình bằng cách thực hiện các phép toán cộng, trừ trên đại số để tìm ra nghiệm. Giải hệ phương trình bằng phương pháp thay thế: Cách tiếp cận giải hệ phương trình bằng việc thay thế giá trị đã biết vào phương trình để tìm ra nghiệm. Giải và biện luận hệ phương trình bậc nhất chứa tham số: Phân tích và đưa ra lời giải cho các hệ phương trình có chứa tham số. Câu hỏi phụ bài toán giải và biện luận: Đặt ra các câu hỏi phụ để khám phá và hiểu sâu hơn về các bài toán trong sách. Bài toán nhiều cách giải: Cung cấp các bài toán có thể được giải theo nhiều cách khác nhau, giúp phát triển tư duy logic và sáng tạo. Tuyển tập sách này không chỉ là nguồn tư liệu hữu ích cho học sinh mà còn là công cụ hỗ trợ giảng dạy hiệu quả cho giáo viên. Với cách trình bày sinh động và dễ hiểu, đây sẽ là nguồn cảm hứng lớn cho những ai yêu toán học.
270 bài toán giải và biện luận phương trình bậc hai một ẩn Lương Tuấn Đức
Nội dung 270 bài toán giải và biện luận phương trình bậc hai một ẩn Lương Tuấn Đức Bản PDF - Nội dung bài viết 270 bài toán giải và biện luận phương trình bậc hai một ẩn 270 bài toán giải và biện luận phương trình bậc hai một ẩn Tài liệu này tập hợp 270 bài toán giải và biện luận về phương trình bậc hai một ẩn, được biên soạn bởi thầy Lương Tuấn Đức để giúp các học sinh chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT và lớp 10 hệ THPT chuyên. Trên 107 trang sách, nội dung chính của tài liệu bao gồm: Giải phương trình bậc hai bằng hằng đẳng thức Giải phương trình bậc hai bằng công thức nghiệm Giải phương trình bậc hai bằng công thức nghiệm thu gọn Giải và biện luận hệ phương trình bậc hai chứa tham số Câu hỏi phụ liên quan đến việc giải và biện luận phương trình Định lý Vi-et thuận và định lý Vi-et đảo Bài toán với nhiều cách giải khác nhau Tài liệu này được thiết kế để giúp học sinh rèn luyện kỹ năng giải phương trình bậc hai một cách linh hoạt và hiệu quả, đồng thời nâng cao kiến thức và khả năng suy luận logic trong giải toán.
101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức
Nội dung 101 bài toán Parabol và các vấn đề liên quan Lương Tuấn Đức Bản PDF - Nội dung bài viết 101 bài toán Parabol và các vấn đề liên quan 101 bài toán Parabol và các vấn đề liên quan Trên mặt phẳng hàm số và đồ thị, tài liệu này tập trung vào việc giải quyết một loạt các bài toán liên quan đến hàm số bậc hai, đặc biệt là parabol đơn giản (ở dạng y = ax^2) có đỉnh tại gốc tọa độ O. Nội dung bao gồm khảo sát sự thay đổi của hàm số, vẽ đồ thị parabol, xác định vị trí tương đối giữa parabol và đường thẳng, một số bài toán kết hợp yếu tố lượng giác và hình học giải tích. Mục tiêu chính của tài liệu là hỗ trợ quá trình dạy và học, chuẩn bị cho kỳ thi tuyển sinh lớp 10 THPT, cung cấp nền tảng cho tư duy hàm số và hình học giải tích ở cấp trung học phổ thông. Nội dung chi tiết của tài liệu bao gồm: Sự biến thiên của hàm số bậc hai Vẽ đồ thị parabol đơn giản Xác định vị trí tương đối giữa đường thẳng và parabol Các bài toán kết hợp yếu tố hình học Bài toán có nhiều cách giải khác nhau Tài liệu không chỉ dừng lại ở mức độ cơ bản mà còn mở rộng kiến thức, khuyến khích sự sáng tạo và đột phá trong các vấn đề toán học và ứng dụng chúng trong các môn khoa học tự nhiên. Mong rằng độc giả sẽ thấy hứng thú và thú vị khi nghiên cứu về đồ thị parabol và các vấn đề liên quan trong tài liệu này.
123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức
Nội dung 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Bản PDF - Nội dung bài viết Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Trong lĩnh vực Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, hàm số và đồ thị là những dạng toán cơ bản nhưng rất thú vị. Chúng có phạm vi rộng lớn, liên kết chặt chẽ với nhiều phần khác của toán học sơ cấp và hiện đại. Ở Việt Nam, kiến thức về hàm số và đồ thị đóng vai trò quan trọng trong giáo dục, được giảng dạy trong chương trình sách giáo khoa từ lớp 7, tiếp tục qua các lớp 9, 10, 11, 12 cùng với các kiến thức liên quan. Các kỹ năng về hàm số, đồ thị được rèn luyện đều đặn, bài bản và có hệ thống để hữu ích không chỉ trong môn Toán mà còn phục vụ cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học. Trong chương trình Đại số lớp 9 THCS, hàm số và đồ thị đóng vai trò quan trọng trong các đề thi kiểm tra, đề thi tuyển sinh lớp 10 THPT và các trường chuyên. Các bài toán về hàm số và đồ thị tạo cơ sở cho kiến thức chính trong các lớp 10, 12, bao gồm cả hàm số bậc cao và bài toán hình học giải tích. Trong tác phẩm về hàm số và đồ thị, tác giả tập trung vào các bài toán khảo sát biến thiên, vẽ đồ thị của hàm số bậc nhất (đường thẳng), vị trí tương đối giữa các đường thẳng, cũng như vị trí tương đối giữa đường thẳng và đường cong. Ngoài ra, có những bài toán kết nối với yếu tố lượng giác và hình học giải tích. Đồng thời, tác giả cố gắng mở rộng, nâng cao từng bài toán theo nội dung chính về hàm số bậc THPT. Điều này giúp phát triển tư duy hàm số, tư duy hình học giải tích cho học sinh THCS và tạo cơ sở cho các kỳ thi đầy cam go như kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia. Tóm lại, việc nghiên cứu đường thẳng và hàm số không chỉ giúp học sinh hiểu sâu hơn về toán học mà còn giúp họ áp dụng kiến thức vào các môn khoa học khác một cách sáng tạo và linh hoạt.