Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B)

Nội dung Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B) Bản PDF Sytu chia sẻ đến các bạn nội dung đề thi và lời giải đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B), kỳ thi được diễn ra vào ngày 04 tháng 12 năm 2018, đề gồm 1 trang với 06 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng B) : + Một hộ gia đình cần xây dựng một bể chứa nước, dạng hình hộp chữ nhật có thể tích 24 (m3).Tỉ số giữa chiều cao của bể và chiều rộng của bể bằng 4. Biết rằng bể chỉ có các mặt bên và mặt đáy (không có mặt trên). Chiều dài của đáy bể bằng bao nhiêu để xây bể tốn ít nguyên vật liệu nhất. + Có hai chuồng nhốt thỏ, chuồng thứ nhất nhốt 19 con thỏ lông màu đen và 1 con thỏ lông màu trắng. Chuồng thứ hai nhốt 13 con thỏ lông màu đen và 2 con thỏ lông màu trắng. Bắt ngẫu nhiên mỗi chuồng đúng một con thỏ. Tính xác suất để bắt được hai con thỏ có màu lông khác nhau. + Cho hàm số y = x^4 + 2(m + 1)x^2 + m^2 + m – 1, với m là tham số. Tìm các giá trị của m để đồ thị hàm số đã cho có ba điểm cực trị là 3 đỉnh của một tam giác đều. [ads] + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD, AB = 2AD. Điểm N thuộc cạnh AB sao cho AN = 1/4.AB, M là trung điểm của DC. Gọi I là giao điểm của MN và BD. Viết phương trình đường tròn ngoại tiếp tam giác BIN. Biết điểm A(2;1), đường thẳng BD có phương trình 11x – 2y + 5 = 0, điểm B có hoành độ là số nguyên. + Cho tam giác ABC có cạnh BC = a, AB = c thỏa mãn √(2a – c).cosB/2 = √(2a + c).sinB/2, với 2a > c. Chứng minh rằng tam giác ABC là tam giác cân.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi vòng tỉnh môn Toán THPT năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Tiền Giang
Thứ Ba ngày 09 tháng 03 năm 2021, sở Giáo dục và Đào tạo Tiền Giang tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Tiền Giang gồm 02 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề).
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp thành phố môn Toán (thường) năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho hàm số y = x^2 + x + 2021,5 có đồ thị (P). Tìm tập hợp các điểm M trong mặt phẳng mà từ M có thể kẻ được hai tiếp tuyến vuông góc đến (P). + Cho hình nón đỉnh S có đáy là đường tròn (O). Trong hình nón, người ta đặt một hình chóp D.ABC có đáy ABC là tam giác cân tại A, nội tiếp đường tròn (O) và BAC = 120°. Đỉnh D nằm trên mặt xung quanh của hình nón, các mặt bên của hình chóp tạo với đáy một góc bằng nhau. a) Chứng minh D thuộc đường thẳng SA. b) Tính thể tích khối nón khi thể tích khối chóp bằng 3. + Cho X = {n thuộc Z | -5 =< n =< 5} và X là tập hợp các hàm số f(x) = ax4 + bx2 + c có a, b, c thuộc X và f(x) có 3 điểm cực trị. Chọn ngẫu nhiên f(x) từ X, tính xác suất để gốc tọa độ O nằm hoàn toàn trong tam giác tạo thành từ ba điểm cực trị của đồ thị f(x).
Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Bắc Giang
Thứ Bảy ngày 06 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề thi trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Bắc Giang : + Cho hai mặt phẳng (P), (Q) song song với nhau và cùng cắt khối cầu tâm O, bán kính R thành hai hình tròn cùng bán kính. Xét hình nón có đỉnh trùng với tâm của một trong hai hình tròn này và có đáy là hình tròn còn lại. Khoảng cách h giữa hai mặt phẳng (P), (Q) khi diện tích xung quanh của hình nón lớn nhất là? + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 6cm, BC = BB’ = 2cm. Gọi E là trung điểm cạnh BC. Một tứ diện đều MNPQ có hai đỉnh M và N nằm trên đường thẳng EC’, hai đỉnh P và Q nằm trên đường thẳng đi qua điểm B và cắt đường thẳng AD tại điểm F. Độ dài đoạn thẳng A’F bằng? + Cho hàm số y = x3 – 3mx2 + 3(m2 – 1)x – m3 – m (với m là tham số) và điểm I(2;-2). Gọi S là tập hợp các giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị A, B sao cho tam giác IAB nội tiếp đường tròn có bán kính bằng √5. Tích các phần tử của tập S là?