Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đẳng thức tổ hợp

Tài liệu gồm 181 trang, được biên soạn bởi các tác giả: Trần Quốc Nhật Hân, Bùi Đức Lộc, Hoàng Xuân Thanh, Lê Kim Nhã, Nguyễn Bảo Phúc, Trần Trung Kiên, Lưu Giang Nam, Hoàng Minh Quân, Nguyễn Hiền Trang … (thành viên Diễn đàn Toán học), tập hợp các bài viết liên quan đến đẳng thức tổ hợp, một dạng toán thường gặp trong các đề thi HSG môn Toán bậc THPT. Chương 1 . Tổng quan về hệ số nhị thức. 1.1 Một số khái niệm. 1.2 Các tính chất cơ bản. Chương 2 . Phương pháp cân bằng hệ số chứng minh đẳng thức tổ hợp. 2.1 Khai triển số thực. 2.2 Ứng dụng số phức. Chương 3 . Tính tổng, chứng minh đẳng thức tổ hợp (ĐTTH) bằng phương pháp sai phân từng phần. 3.1 Sai phân (Difference). 3.2 Sai phân từng phần. 3.3 Một số bài toán và ví dụ minh hoạ. 3.4 Bài tập tự luyện. [ads] Chương 4 . Sử dụng hàm sinh chứng minh đẳng thức tổ hợp. 4.1 Thay lời mở đầu. 4.2 Những biến đổi đại số thường gặp với (n k). 4.3 Những dạng khai triển hàm sinh cần biết. 4.4 Những định lý cơ bản trong tính tổng dùng hàm sinh. 4.5 Bài tập minh họa. 4.6 Các bài toán không mẫu mực. 4.7 Bài tập tự luyện. Chương 5 . Ứng dụng đẳng thức tổ hợp vào số học. 5.1 Định lý. 5.2 Một số hệ thức cơ bản. 5.3 Các bài toán. 5.4 Bài tập. Chương 6 . Kỹ thuật đếm bằng hai cách chứng minh đẳng thức tổ hợp. 6.1 Nguyên lí đếm bằng hai cách. 6.2 Ứng dụng chứng minh đẳng thức tổ hợp. 6.3 Ứng dụng phương pháp đếm giải các bài toán đồ thị. 6.4 Ứng dụng đếm hai cách giải các bài toán rời rạc. 6.5 Bài tập. Tài liệu tham khảo.

Nguồn: toanmath.com

Đọc Sách

Thủ thuật casio tìm hệ số trong khai triển nhị thức Newton - Bùi Thế Việt
Như chúng ta đã biết, kể từ kỳ thi THPT Quốc Gia năm 2017, môn Toán được thi dưới hình thức khác là trắc nghiệm. Với 50 câu hỏi trong 180 phút cùng hàng chục nghìn câu hỏi trắc nghiệm lấy từ ngân hàng đề thi của bộ GD&ĐT, chúng ta khó có thể lường trước được những gì sẽ xảy ra trong kỳ thi sắp tới. Trong các công cụ được mang vào phòng thi thì CASIO hoặc các máy tính cầm tay khác là thiết bị không thể thiếu trong mỗi kỳ thi. Để đạt hiệu quả cao nhất thì chúng ta cần phải biết cách sử dụng các tính năng của CASIO một cách tối đa. [ads] Trong chuyên đề này, chúng ta sẽ sử dụng CASIO trong việc giải nhanh các bài toán liên quan tới việc yêu cầu tìm hệ số trong khai triển nhị thức Newton. Lưu ý: Thủ thuật chỉ phù hợp với hình thức thi trắc nghiệm.
Câu tổ hợp - xác suất cần học những gì - Lê Minh Cường
Dưới đây là các nhận xét chủ quan của tôi về các câu tổ hợp – xác suất trong đề thi những năm gần đây. Học sinh cần ôn kỹ kiến thức về các quy tắc đếm, các định nghĩa về tổ hợp – chính hợp – hoán vị; tính xác suất của biến cố đối. Về điểm thì những năm gần hơn số điểm đã giảm dần, tăng tính ứng dụng của xác suất trong thực tế. Về mức độ khó và phức tạp ở mức tăng nhẹ so với từng năm, yêu cầu học sinh cần tư duy cao, pháp hiện phương pháp phù hợp để xác định số phần tử không gian mẫu và biến cố. Ngoài ra còn các phương trình về các đại lượng tổ hợp, tìm hệ số, số hạng của nhị thức Newton học sinh cũng cần lưu ý. Tài liệu này được chia là hai phần chính: [ads] + Phần A: BÀN VỀ CÂU TỔ HỢP XÁC SUẤT TRONG CÁC ĐỀ THI + Phần B: NHỮNG VẤN ĐỀ LIÊN QUAN ĐẾN TỔ HỢP XÁC SUẤT * Bài 1: QUI TẮC CỘNG, QUI TẮC NHÂN * Bài 2: HOÁN VỊ, CHỈNH HỢP VÀ TỔ HỢP * Bài 3: NHỊ THỨC NEWTON * Bài 4: ÔN TẬP PHẦN TỔ HỢP * Bài 5: BIẾN CỐ VÀ XÁC SUẤT CỦA BIẾN CỐ Phần A là để học sinh định hình được những gì cần ôn lại cho câu Tổ hợp xác suất trong các đề thi gần nhất. Giúp học sinh hình dung tổng quát nhất về kỳ thi, ôn tập một cách hiệu quả. Phần B chỉ đóng vai trò tham khảo cho sự ôn tập của học sinh. Hãy chọn những phần trọng tâm nhất, những phần mà các bạn còn nắm chưa vững để đọc và nghiên cứu bài tập.
Một số bài toán về quy tắc đếm - Nguyễn Tiến Chinh
Tài liệu một số bài toán về quy tắc đếm của thầy giáo Nguyễn Tiến Chinh gồm 22 trang với các bài toán điển hình, có lời giải chi tiết.
Tính giá trị và chứng minh các biểu thức tổ hợp - Mai Ngọc Thắng
Chứng minh đẳng thức và tính giá trị biểu thức trong giải tích tổ hợp là một vấn đề khá rộng, nó có mặt trong những bài thi THPT và cả trong các đề thi HSG Quốc gia. Với mong muốn giúp các bạn có thêm tư liệu cho việc tự học, đây là những kiến thức tôi có được trong quá trình luyện thi với người thầy kính yêu Vũ Vĩnh Thái và thêm một ít tôi sưu tầm được, tôi xin tổng hợp lại thành một chuyên đề nho nhỏ cũng nhằm thêm mục đích là lưu trữ. Trong chuyên đề này hầu hết là liên quan đến tổ hợp nên các bạn cần nắm vững và sử dụng thuần thục 3 công thức liên quan đến tổ hợp như trên và trong từng mục tôi sẽ nhắc lại công thức áp dụng trong các bài tập thuộc mục đó. [ads] Các bài tập tôi nêu ra đều minh họa khá rõ cho phương pháp và sẽ có một số bài tập để các bạn có thể rèn luyện lại. Tôi sẽ cố gắng phân tích hướng giải ở một số bài toán với mong muốn giúp các bạn hiểu sâu sắc hơn về lời giải của bài toán đó.