Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giới hạn, hàm số liên tục Toán 11 GDPT 2018

Tài liệu gồm 171 trang, bao gồm kiến thức trọng tâm, các dạng toán thường gặp và bài tập chuyên đề giới hạn, hàm số liên tục môn Toán 11 chương trình GDPT 2018. Bài 1 . Giới hạn của dãy số 332. A Giới hạn hữu hạn của dãy số 332. 1. Định nghĩa 332. 2. Một số giới hạn cơ bản 332. B Định lí về giới hạn hữu hạn 332. C Tổng của cấp số nhân lùi vô hạn 333. D Giới hạn vô cực 333. E Các dạng toán thường gặp 333. + Dạng 1. Tính giới hạn dãy số bằng cách dùng định nghĩa, định lí về giới hạn dãy số 333. 1. Ví dụ mẫu 333. 2. Bài tập tự luyện 335. 3. Bài tập trắc nghiệm 336. + Dạng 2. Tính giới hạn L = lim P(n)/Q(n) 338. 1. Ví dụ mẫu 338. 2. Bài tập tự luyện 340. 3. Câu hỏi trắc nghiệm 352. + Dạng 3. Phương pháp lượng liên hợp (lim hữu hạn) 355. 1. Ví dụ mẫu 355. 2. Bài tập rèn luyện 356. 3. Bài tập trắc nghiệm 357. + Dạng 4. Giới hạn vô cực 361. 1. Ví dụ mẫu 361. 2. Bài tập tự luyện 362. 3. Bài tập trắc nghiệm 363. + Dạng 5. Tính tổng của dãy cấp số nhân lùi vô hạn 365. 1. Ví dụ mẫu 365. 2. Bài tập tự luyện 367. 3. Câu hỏi trắc nghiệm 368. + Dạng 6. Toán thực tế, liên môn liên quan đến giới hạn dãy số 371. 1. Ví dụ mẫu 371. 2. Bài tập tự luyện 372. 3. Bài tập trắc nghiệm 379. Bài 2 . Giới hạn của hàm số 385. A Giới hạn hữu hạn của hàm số tại một điểm 385. 1. Định nghĩa 385. 2. Phép toán trên giới hạn hữu hạn của hàm số 385. 3. Giới hạn một phía 385. B Giới hạn hữu hạn của hàm số tại vô cực 386. C Giới hạn vô cực (một phía) của hàm số tại một điểm 386. D Giới hạn vô cực của hàm số tại vô cực 387. E Các dạng toán thường gặp 387. + Dạng 1. Tính giới hạn bằng định nghĩa 387. 1. Ví dụ mẫu 387. 2. Bài tập tự luận 388. + Dạng 2. Các phép toán về giới hạn hàm số 389. 1. Ví dụ mẫu 390. 2. Bài tập tự luận 392. 3. Câu hỏi trắc nghiệm 403. + Dạng 3. Phương pháp đặt thừa số chung – kết quả vô cực 413. 1. Ví dụ mẫu 413. 2. Bài tập rèn luyện 414. 3. Câu hỏi trắc nghiệm 415. + Dạng 4. Giới hạn một phía 417. 1. Ví dụ mẫu 418. 2. Bài tập tự luận 419. 3. Câu hỏi trắc nghiệm 421. + Dạng 5. Bài toán thực tế về giới hạn hàm số 424. 1. Ví dụ mẫu 424. 2. Bài tập tự luận 424. Bài 3 . Hàm số liên tục 433. A Khái niệm 433. 1. Hàm số liên tục tại một điểm 433. 2. Hàm số liên tục trên một khoảng hoặc một đoạn 433. B Một số định lí cơ bản 433. 1. Tính liên tục của một số hàm số sơ cấp cơ bản 433. 2. Tính liên tục của tổng, hiệu, tích, thương của hai hàm số liên tục 433. C Các dạng toán thường gặp 434. + Dạng 1. Câu hỏi lý thuyết 434. 1. Ví dụ mẫu 434. 2. Bài tập trắc nghiệm 434. + Dạng 2. Dựa vào đồ thị xét tính liên tục của hàm số tại một điểm, một khoảng 437. 1. Ví dụ mẫu 437. 2. Bài tập tự luận 439. 3. Bài tập trắc nghiệm 440. + Dạng 3. Xét tính liên tục của hàm số tại một điểm 444. 1. Ví dụ mẫu 444. 2. Bài tập tự luyện 445. 3. Bài tập trắc nghiệm 447. + Dạng 4. Hàm số liên tục trên khoảng, đoạn 452. 1. Ví dụ mẫu 452. 2. Bài tập tự luyện 454. 3. Bài tập trắc nghiệm 465. + Dạng 5. Bài toán có chứa tham số 467. 1. Ví dụ mẫu 467. 2. Bài tập rèn luyện 468. 3. Bài tập trắc nghiệm 470. + Dạng 6. Toán thực tế, liên môn về hàm số liên tục 472. 1. Ví dụ 472. + Dạng 7. Bài toán phương trình có nghiệm 473. 1. Ví dụ mẫu 473. 2. Bài tập rèn luyện 474. 3. Bài tập trắc nghiệm 475. Bài 4 . Bài tập cuối chương III 478. A Bài tập tự luận 478. B Bài tập trắc nghiệm 482. C Đề ôn tập 494. 1. Phần Trắc nghiệm (7 điểm) 494. 2. Phần Tự luận (3 điểm) 500.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải các dạng toán giới hạn
Tài liệu gồm 97 trang, hướng dẫn giải các dạng toán giới hạn trong chương trình Đại số và Giải tích 11 chương 4. BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. + Dạng 1.1. Dùng định nghĩa chứng minh giới hạn. + Dạng 1.2. Tính giới hạn dãy số dạng phân thức. + Dạng 1.3. Tính giới hạn dãy số dạng phân thức chứa a^n. + Dạng 1.4. Dãy số dạng Lũy thừa – Mũ. + Dạng 1.5. Giới hạn dãy số chứa căn thức. BÀI 2 . GIỚI HẠN HÀM SỐ. + Dạng 2.1. Giới hạn của hàm số dạng vô định 0/0. + Dạng 2.2. Giới hạn dạng vô định ∞/∞; ∞ – ∞; 0.∞. + Dạng 2.3. Tính giới hạn hàm đa thức, hàm phân thức và giới hạn một bên. BÀI 3 . HÀM SỐ LIÊN TỤC. + Dạng 3.1. Xét tính liên tục của hàm số tại một điểm. + Dạng 3.2. Hàm số liên tục trên một tập hợp. + Dạng 3.3. Dạng tìm tham số để hàm số liên tục – gián đoạn. + Dạng 3.4. Chứng minh phương trình có nghiệm. BÀI 4 . ĐỀ KIỂM TRA CHƯƠNG IV.
Lý thuyết và bài tập chuyên đề giới hạn - Phùng Hoàng Em
Tài liệu gồm 31 trang, được biên soạn bởi thầy giáo Phùng Hoàng Em, tóm tắt lý thuyết và tuyển chọn các bài tập trắc nghiệm (có đáp án) các chuyên đề: giới hạn của dãy số, giới hạn của hàm số, hàm số liên tục; giúp học sinh lớp 11 rèn luyện khi học chương trình Đại số và Giải tích 11 chương 4: Giới hạn. Mục lục tài liệu lý thuyết và bài tập chuyên đề giới hạn – Phùng Hoàng Em: 1. GIỚI HẠN CỦA DÃY SỐ. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Khử vô định dạng ∞/∞. Dạng 2. Khử vô định dạng ∞ − ∞. Dạng 3. Một số quy tắc tính giới hạn vô cực. Dạng 4. Tổng của cấp số nhân lùi vô hạn. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 2. GIỚI HẠN CỦA HÀM SỐ. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Giới hạn của hàm số khi x → x0. Khử dạng vô định 0/0. Dạng 2. Giới hạn của hàm số khi x → ±∞. Khử dạng vô định ∞/∞; ∞ − ∞; 0·∞. Dạng 3. Giới hạn một bên. Sự tồn tại giới hạn. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 3. HÀM SỐ LIÊN TỤC. A TÓM TẮT LÝ THUYẾT. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN. Dạng 1. Xét tính liên tục của hàm số tại một điểm. Dạng 2. Xét tính liên tục của hàm số trên miền xác định. Dạng 3. Tìm giá trị của tham số để hàm số liên tục – gián đoạn. Dạng 4. Chứng minh phương trình có nghiệm. C BÀI TẬP TỰ LUYỆN. D BÀI TẬP TRẮC NGHIỆM. 4. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ.
218 câu vận dụng cao giới hạn ôn thi THPT môn Toán
Tài liệu gồm 22 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 218 câu vận dụng cao (VDC) giới hạn có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 218 câu vận dụng cao giới hạn ôn thi THPT môn Toán: + Cho 4ABC đều có cạnh bằng 1. Gọi A1, B1, C1 lần lượt là trung điểm BC, CA, AB ta được 4A1B1C1. Tương tự 4A2B2C2 có các đỉnh là trung điểm của các cạnh B1C1, C1A1, A1B1. Quá trình lặp lại sau n bước (n ∈ N∗) ta được 4AnBnCn. Gọi S0, Sn lần lươt là diện tích 4ABC và 4AnBnCn. Đặt Tn là tổng diện tích các tam giác ABC, A1B1C1,. . . , AnBnCn. Hỏi Tn không vượt quá số nào sau đây? + Trong dịp hội trại hè 2020 bạn An thả một quả bóng cao su từ độ cao 3 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng hai phần ba độ cao lần rơi trước. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng? + Cho phương trình x5 + 3×2 − 14x − 7 = 0. Mệnh đề nào dưới đây là đúng. A Phương trình có đúng 3 nghiệm trong (−1; 2). B Phương trình có 1 nghiệm trong (0; 1). C Phương trình không có nghiệm trong (1; 2). D Phương trình có ít nhất 2 nghiệm trong (−1; 2).
Giới hạn dãy số, giới hạn hàm số và hàm số liên tục - Diệp Tuân
Tài liệu gồm 156 trang, được biên soạn bởi thầy giáo Diệp Tuân, phân dạng và hướng dẫn giải các bài tập chuyên đề giới hạn dãy số, giới hạn hàm số và hàm số liên tục (Đại số và Giải tích 11 chương 4). Khái quát nội dung tài liệu giới hạn dãy số, giới hạn hàm số và hàm số liên tục – Diệp Tuân: BÀI 1 . GIỚI HẠN CỦA DÃY SỐ. Dạng 1. Chứng minh dãy số có giới hạn là 0. Dạng 2. Dùng định nghĩa chứng minh dãy số (un) có giới hạn hữu hạn L. Dạng 3. Tìm giới hạn của dãy (un) có giới hạn hữu hạn bằng quy tắc, định lý. + Bài toán 1. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (với P(n) và Q(n) là hai đa thức). + Bài toán 2. Dãy (un) là một phân thức dạng un = P(n)/Q(n) (với P(n) và Q(n) là các biểu thức chứa căn của n). + Bài toán 3. Dãy (un) là một phân thức hữu tỉ dạng un = P(n)/Q(n) (trong đó P(n) và Q(n) là các biểu thức chứa hàm mũ). Dạng 4. Tính giới hạn mà dãy (un) cho dưới dạng công thức truy hồi. Dạng 5. Tính giới hạn dựa vào định lý kẹp. Dạng 6. Giới hạn có kết quả là vô cực. BÀI 2 . GIỚI HẠN CỦA HÀM SỐ. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Tìm giới hạn của hàm số tại một điểm bằng quy tắc, định lý. + Bài toán 1. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là đa thức theo biến x. + Bài toán 2. Hàm số f(x) = P(x)/Q(x) trong đó P(x) và Q(x) là các biểu thức có chứa căn thức theo x. + Bài toán 3. Thêm bớt số hạng hoặc một biểu thức vắng để khử được dạng vô định (khử căn bậc hai và bậc ba). Dạng 3. Tìm giới hạn của hàm số khi x → ±∞. + Bài toán 1. Giới hạn hữu hạn lim P(x).Q(x) với lim P(x) = L và lim Q(x) = ±∞. + Bài toán 2. Giới hạn hữu hạn hữu tỉ lim P(x)/Q(x) (bậc tử bé hơn hoặc bằng bậc mẫu). + Bài toán 3. Giới hạn vô cực lim P(x)/Q(x) (bậc tử lớn hơn bậc mẫu). + Bài toán 4. Giới hạn vô cực dạng vô định ∞ – ∞. + Bài toán 5. Giới hạn vô cực dạng vô định 0.∞. Dạng 4. Tìm giới hạn của hàm số các hàm đặc biệt. [ads] BÀI 3 . GIỚI HẠN MỘT BÊN. Dạng 1. Tìm giới hạn của hàm số bằng định nghĩa. Dạng 2. Chứng minh sự tồn tại của giới hạn. BÀI 4 . HÀM SỐ LIÊN TỤC. Dạng 1. Xét tính liên tục của hàm số tại một điểm. + Bài toán 1. Cho hàm số f(x) = f1(x) khi x khác x0 và f(x) = f2(x) khi x = x0. + Bài toán 2. Cho hàm số f(x) = f1(x) khi x < x0 và f(x) = f2(x) khi x ≥ x0. Dạng 2. Xét tính liên tục của hàm số trên R. Dạng 3. Chứng minh phương trình có nghiệm. + Bài toán 1. Cho phương trình f(x) = 0. Chứng minh phương trình có nghiệm. + Bài toán 2. Chứng minh phương trình có chứa tham số m luôn có nghiệm với mọi m. + Bài toán 3. Chứng minh phương trình có chứa tham số m luôn có nghiệm dương hoặc nghiệm âm với mọi m.