Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề khối đa diện

Tài liệu gồm 81 trang được biên soạn bởi thầy giáo Lê Đình Hùng và Nguyễn Văn Vinh, hướng dẫn phương pháp giải toán và tuyển tập trắc nghiệm có đáp án chuyên đề khối đa diện, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Khái quát nội dung tài liệu chuyên đề khối đa diện: A – KIẾN THỨC BỔ TRỢ CHO CHUYÊN ĐỀ I. Hình học phẳng. II. Hình học không gian lớp 11: Quan hệ song song, Quan hệ vuông góc, Góc và Khoảng cách. B – CHUYÊN ĐỀ KHỐI ĐA DIỆN BÀI 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. Phương pháp: Nắm vững lý thuyết về hình đa diện, khối đa diện, các phép dời hình và phân chia, lắp ráp các khối đa diện. Ngoài ra ta cần ghi nhớ thêm các kiến thức sau: + Mối liên hệ giữa số cạnh, số đỉnh và số mặt của một hình đa diện bất kỳ. + Hình chóp có số đỉnh bằng số mặt và có số cạnh gấp đôi số cạnh của đáy. + Nếu một khối đa diện chỉ có các mặt là tam giác thì tổng số các mặt là số chẵn. BÀI 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. BÀI 3 . THỂ TÍCH CỦA KHỐI ĐA DIỆN. [ads] Phương pháp chung: Có 4 phương pháp để tính thể tích của một khối đa diện: + Phương pháp 1: Tính theo công thức. Trong phương pháp này ta cần phải đi tìm đường cao và diện tích đáy. + Phương pháp 2: Sử dụng công thức tỷ số diện tích. Phương pháp này chỉ được áp dụng cho tứ diện, khi có một mặt phẳng cắt tứ diện theo một giao diện nào đó. + Phương pháp 3: Tính thể tích bằng cách chia nhỏ khối đa diện. Khi khối đa diện ban đầu rất khó xác định được chiều cao hoặc diện tích đáy, ta nên dùng phương pháp này. + Phương pháp 4: Tính thể tích bằng cách mở rộng khối đa diện. Ta có thể mở rộng khối đa diện ban đầu để được một khối đa diện mới dễ tính thể tích hơn. Lưu ý phần khối đa diện được mở rộng phải dễ tính thể tích. Khi đó thể tích khối đa diện ban đầu bằng thể tích khối đa diện lúc sau trừ cho thể tích của khối đa diện được mở rộng. CÁC DẠNG BÀI TẬP VỀ HÌNH CHÓP : + Dạng 1: Hình chóp có cạnh bên vuông góc với đáy. + Dạng 2: Hình chóp có một mặt bên vuông góc với đáy. + Dạng 3: Hình chóp đều. + Dạng 4: Phương pháp tỷ số thể tích. + Dạng 5: Cạnh bên hoặc mặt bên tạo với đáy một góc và một số bài toán khác. + Dạng 6: Các bài toán tính khoảng cách. + Dạng 7: Các bài toán xác định góc. CÁC BÀI TẬP VỀ HÌNH LĂNG TRỤ : + Dạng 1: Các bài toán về lăng trụ đứng. + Dạng 2: Hình lăng trụ xiên.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khối đa diện, góc và khoảng cách - Đặng Việt Đông
Tài liệu gồm 134 trang tổng hợp lý thuyết, các dạng toán, phương pháp giải và bài tập có lời giải chi tiết thuộc các chuyên đề khối đa diện, góc và khoảng cách. Nội dung tài liệu gồm các phần: HÌNH ĐA DIỆN 1. Khái niệm về hình đa diện và khối đa diện 2. Hai hình bẳng nhau 3. Phân chia và lắp ghép khối đa diện 4. Khối đa diện lồi 5. Khối đa diện đều THỂ TÍCH HÌNH CHÓP 1. Nếu khối chóp đã cho có chiều cao h và diện tích đáy B thì thể tích tính theo công thức: V = 1/3.Bh. 2. Nếu khối chóp cần tính thể tích chưa biết chiều cao thì ta phải xác định được vị trí chân đường cao trên đáy. a. Chóp có cạnh bên vuông góc chiều cao chính là cạnh bên b. Chóp có hai mặt bên vuông góc đáy đường cao là giao tuyến của hai mặt bên vuông góc đáy c. Chóp có mặt bên vuông góc đáy chiều cao của mặt bên vuông góc đáy d. Chóp đều chiều cao hạ từ đỉnh đến tâm đa giác đáy e. Chóp có hình chiếu vuông góc của một đỉnh lên xuống mặt đáy thuộc cạnh mặt đáy đường cao là từ đỉnh tới hình chiếu [ads] TỈ SỐ THỂ TÍCH HÌNH LĂNG TRỤ 1. Thể tích khối lăng trụ 2. Thể tích khối hộp chữ nhật 3. Thể tích khối lập phương KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến một đường thẳng: Khoảng cách từ một điểm đến một đường thẳng a là d(M, Δ) = MH, trong đó H là hình chiếu của M trên Δ. 2. Khoảng cách từ một điểm đến một mặt phẳng: Khoảng cách từ một điểm đến đến một mặt phẳng (α) là d(O, (α)) = OH, trong đó H là hình chiếu của O trên (α). + Cách 1. Tính trực tiếp: Xác định hình chiếu H của O trên (α) và tính OH + Cách 2. Sử dụng công thức thể tích + Cách 3. Sử dụng phép trượt đỉnh + Cách 4. Sử dụng tính chất của tứ diện vuông + Cách 5. Sử dụng phương pháp tọa độ 3. Khoảng cách từ một đường thẳng đến một mặt phẳng song song với nó 4. Khoảng cách giữa hai mặt phẳng song song 5. Khoảng cách giữa hai đường thẳng chéo nhau GÓC 1. Góc giữa hai đường thẳng 2. Góc giữa đường thẳng với mặt phẳng 3. Góc giữa hai mặt phẳng 4. Diện tích hình chiếu của một đa giác
Tổng ôn chuyên đề cực trị hình học không gian - Phạm Minh Tuấn
Tài liệu gồm 20 trang tuyển tập 20 bài toán nâng cao thuộc chuyên đề cực trị hình học không gian có phân tích và giải chi tiết. Ngoài ra còn có 3 bài toán áp dụng dành cho bạn đọc tự giải. Bài toán cực trị hình học không gian là các bài toán thuộc mức độ vận dụng cao trong đề thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh a, cạnh bên SB = b và tam giác SAC cân tại S. Trên cạnh AB lấy điểm M với AM = x (0 < x < a). Mặt phẳng qua M song song với AC, SB và cắt BC, SC, SA lần lượt tại N, P, Q. Xác định x để diện tích thiết diện MNPQ đạt giá trị lớn nhất. + Cho hình lập phương ABCD.A’B’C’D’ có cạnh là a và hai điểm M, N lần lượt di động trên các đường chéo A’B và AC sao cho A’M = AN = x. Xác định x để độ dài đoạn thẳng MN đạt giá trị nhỏ nhất. [ads] + Cho hai đường thẳng Ax, By chéo nhau và vuông góc với nhau có AB = a là đường vuông góc chung. Hai điểm M, N lần lượt di động trên Ax, By sao cho MN = b (với b là độ dài cho trước). Xác định độ dài đoạn thẳng AM theo a, b để thể tích tứ diện ABMN đạt giá trị lớn nhất. + Cho tứ diện ABCD, biết BCD là tam giác đều cạnh a và có tâm là điểm O. Mặt cầu ngoại tiếp tứ diện ABCD nhận đường tròn (BCD) làm một đường tròn lớn. Tìm thể tích lớn nhất của tứ diện ABCD. + Cho tam giác đều OAB có cạnh bằng a. Trên đường thẳng d đi qua O và vuông góc với mặt phẳng (OAB) lấy điểm M với OM = x. Gọi E, F lần lượt là các hình chiếu vuông góc của A lên MB, OB. Trên đoạn thẳng EF cắt d tại N. Xác định x để thể tích tứ diện ABMN là nhỏ nhất.
Chuyên đề khoảng cách và thể tích khối đa diện - Hoàng Văn Phiên
Tài liệu gồm 17 trang hệ thống kiến thức từ lớp 8 đến 12 và bài tập các dạng toán trong chuyên đề khoảng cách và thể tích khối đa diện. A – ÔN TẬP KIẾN THỨC 1. Một số hệ thức lượng trong tam giác vuông 2. Một số hệ thức lượng trong tam giác thường 3. Các công thức tính diện tích 4. Quan hệ song song 5. Quan hệ vuông góc 6. Khoảng cách và góc 7. Thể tích khối đa diện [ads] B – CÁC DẠNG BÀI TẬP 1. Hình vẽ trong không gian 2. Khoảng cách trong không gian + Bài toán 1. Khoảng cách từ 1 điểm đến 1 mặt phẳng + Bài toán 2. Khoảng cách giữa hai đường thẳng chéo nhau 3. Bài toán thể tích khối đa diện + Bài toán 1. Đường cao khối đa diện + Bài toán 2. Tỉ số thể tích + Bài toán 3. Phân chia khối đa diện
Chuyên đề hình học không gian dành cho học sinh trung bình - yếu
Kỳ thi THPT Quốc Gia 2016 – 2017 đã cận kề, từ nhu cầu thực tế ôn luyện của các học sinh trung bình và yếu, các thầy cô giáo ở khắp mọi miền trong cả nước đã biên soạn bộ tài liệu ÔN TẬP KỲ THI THPTQG dành cho đối tượng học sinh trung bình. Chuyên đề HÌNH HỌC KHÔNG GIAN được nhóm 04 thầy cô: Lê Văn Định, Dương Phước Sang, Phùng Hoàng Em, Trần Thị Thu Thảo biên soạn nội dung. Hỗ trợ hình học thầy Lê Quang Hòa. Chuyên đề bao gồm 04 nội dung chính: + Phần 1: Đa diện – Thể tích khối đa diện + Phần 2: Mặt nón – Khối nón + Phần 3: Mặt cầu – Khối cầu + Phần 4: Mặt trụ – Khối trụ [ads] Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình. Với nội dung các câu hỏi thuộc các mức độ nhận biết và thông hiểu, nhằm giúp học sinh quen với các hình không gian cơ bản nhớ được công thức tính diện tích thể tích và các yếu tố liên quan đến các hình.