Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Quỳnh Lưu - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử và khảo sát chất lượng học sinh môn Toán 9 giai đoạn học kỳ 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Quỳnh Lưu – Nghệ An : + Một quyển sách Toán có giá bìa 30000 đồng, đang được giảm giá 5%. Một quyển sách Văn có giá bìa 40000 đồng, đang được giảm giá 10%. Trong thời gian giảm giá, nhà sách đó bán được tất cả 120 quyển sách Văn và Toán, thu được về số tiền là 3795000 đồng. Hỏi nhà sách đó đã bán được bao nhiêu quyển sách Văn, bao nhiêu quyển sách Toán? + Hải đăng Đá Lát là một trong 7 ngọn hải đăng cao nhất Việt Nam, được đặt trên đảo Đá Lát ở vị trí cực Tây Quần đảo, thuộc xã đảo Trường Sa, huyện Trường Sa, tỉnh Khánh Hòa. Ngọn hải đăng được xây dựng năm 1994, cao 42 mét, có tác dụng chỉ vị trí đảo, giúp tàu thuyền hoạt động trong vùng biển Trường Sa định hướng và xác định được vị trí mình. Một người đi trên tàu đánh cá muốn đến ngọn hải đăng Đá Lát, người đó đứng trên mũi tàu cá và dùng giác kế đo được góc giữa mũi tàu và tia nắng chiếu từ đỉnh ngọn hải đăng đến tàu là 10° (hình vẽ dưới đây). Tính khoảng cách AB từ tàu đến ngọn hải đăng (làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC ngoại tiếp đường tròn (O). Gọi D, E, F lần lượt là tiếp điểm giữa các cạnh BC, AB, AC với đường tròn (O). Kẻ DH vuông góc EF tại H. a) Chứng minh rằng: tứ giác AEOF nội tiếp đường tròn. b) Tia BH cắt đường tròn tại M và N sao cho M nằm giữa B và H, H nằm giữa M và N. Chứng minh: BE2 = BM.BN. c) Chứng minh rằng.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Thanh Xuân - Hà Nội
Đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được diễn ra vào thứ Sáu ngày 15 tháng 03 năm 2019. Trích dẫn đề kiểm tra khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội công nhân theo kế hoạch cần phải sản xuất 900 sản phẩm trong một số ngày quy định. Do mỗi ngày đội công nhân đó sản xuất vượt mức 3 sản phẩm nên đội công nhân đã hoàn thành vượt mức kế hoạch 90 sản phẩm và sớm hơn thời gian quy định 3 ngày. Hỏi theo kế hoạch, mỗi ngày đội công nhân phải sản xuất bao nhiêu sản phẩm? [ads] + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2(m – 1)x + 5 – 2m (m là tham số) và parabol (P): y = x^2. a) Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. b) Tìm giá trị của m để (d) cắt (P) tại hai điểm phân biệt có tổng tung độ bằng 30. + Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn sao cho OA = 2R. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). M là điểm bất kỳ trên cung nhỏ BC, tiếp tuyển tại M của đường tròn cắt các đường thẳng AB, AC lần lượt tại E và F. a) Chứng minh tứ giác ABOC là tứ giác nội tiếp. b) Chứng minh tam giác ABC là tam giác đều. c) Chứng minh khi M di động trên cung nhỏ BC thì chu vi tam giác AEF không đổi. Tính chu vi tam giác AEF theo R. d) Tìm vị trí của M trên cung nhỏ BC để đoạn EF có độ dài nhỏ nhất.
Đề khảo sát Toán 9 lần 2 năm 2018 - 2019 trường THCS Đại Áng - Hà Nội
Chủ Nhật ngày 03 tháng 03 năm 2019, trường Trung học Cơ sở Đại Áng, Thanh Trì – Hà Nội đã tiến hành tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần 2 năm học 2018 – 2019, đề thi gồm 05 bài toán tự luận, học sinh làm bài thi Toán trong 120 phút, kỳ thi nhằm kiểm tra chất lượng môn Toán đối với học sinh lớp 9 giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đồng thời giúp học sinh rèn luyện chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2018 – 2019 trường THCS Đại Áng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô dự định đi từ tỉnh A đến tỉnh B với vận tốc 40 km/h. Lúc đầu ô tô đi với vận tốc đó, khi còn 60 km nữa thì được nửa quãng đường AB người lái xe quyết định tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Do đó đến B sớm hơn 1 giờ so với dự định. Tính quãng đường AB? [ads] + Cho parabol (P): y=x^2 và đường thẳng (d): y = mx + 3 (m là tham số). a) Chứng minh rằng (d) luôn cắt (P) tại 2 điểm phân biệt. b) Biết A(2; 4) là một trong 2 giao điểm của (d) và (P). Tìm m? + Cho nửa đường tròn tâm (O), đường kính AB. Điểm H cố định thuộc đoạn thẳng AO (H khác A và O). Đường thẳng đi qua điểm H và vuông góc với AD cắt nửa đường tròn (O) tại C. Trên cung BC lấy D bất kì (D khác B và C). Tiếp tuyến tại D của nửa đường tròn cắt HC tại E. Gọi I là giao điểm của AD và HC. a) Chứng minh tứ giác HBDI nội tiếp đường tròn. b) Chứng minh tam giác DEI cân. c) Gọi F là tâm đường tròn ngoại tiếp tam giác ICD. Chứng minh góc ABF có số đo không đổi khi D thay đổi trên cung BC (D khác B và C).
Đề khảo sát chất lượng Toán 9 năm 2019 sở GDĐT Bắc Ninh
THCS. giới thiệu đến thầy, cô và các em nội dung đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh, kỳ thi được diễn ra vào ngày 23 tháng 02 năm 2019 nhằm đánh giá chất lượng môn Toán của học sinh lớp 9, đồng thời giúp các em rèn luyện thường xuyên để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh gồm hai phần: phần trắc nghiệm gồm 06 câu, chiếm 30% số điểm, phần tự luận gồm 04 câu, chiếm 70% số điểm, học sinh làm bài thi môn Toán trong 90 phút, đây cũng sẽ là cấu trúc đề Toán tuyển sinh vào lớp 10 năm học 2019 – 2020 mà sở Giáo dục và Đào tạo Bắc Ninh sẽ sử dụng. [ads] Trích dẫn đề khảo sát chất lượng Toán 9 năm 2019 sở GD&ĐT Bắc Ninh : + Một doanh nghiệp tư nhân chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Honda Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất? Tại sao? + Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R. Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D. a) Chứng minh rằng tam giác ABC vuông. b) Chứng minh rằng DC là tiếp tuyến của đường tròn (O). c) Kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng. + Cho hàm số y = (m – 3)x – 2m + 1 có đồ thị là đường thẳng d. a) Tìm m để d đi qua điểm M(1;2). b) Tìm m để d cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho tam giác OAB cân.