Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 lần 2 ôn thi THPT QG 2020 trường Triệu Sơn 2 - Thanh Hóa

Ngày … tháng 03 năm 2020, trường THPT Triệu Sơn 2, tỉnh Thanh Hóa đã tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai theo định hướng thi THPT Quốc gia năm học 2019 – 2020. Đề KSCL Toán 12 lần 2 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa có mã đề 111, đề gồm có 50 câu trắc nghiệm, 07 trang, học sinh làm bài trong 90 phút. Trích dẫn đề KSCL Toán 12 lần 2 ôn thi THPTQG 2020 trường Triệu Sơn 2 – Thanh Hóa : + Một người vay ngân hàng 200 triệu đồng với lãi suất là 0,8%/ tháng. Người đó muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, người đó bắt đầu hoàn nợ, hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ mỗi tháng là như nhau và người ấy trả hết nợ sau đúng 5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số tiền mỗi tháng người đó cần trả cho ngân hàng gần nhất với số tiền nào dưới đây? + Một họa tiết hình cánh bướm như hình vẽ bên dưới. Phần tô đậm được đính đá với giá thành 2.500.000 đồng / m2. Phần còn lại được tô màu với giá thành 2.250.000 đồng / m2. Cho AB = 4dm, BC = 8dm. Hỏi để trang trí 1000 họa tiết như vậy cần số tiền gần nhất với số nào sau đây? [ads] + Bể nước của đài phun nước trường THPT Triệu Sơn 2, tỉnh Thanh Hóa là một hình trụ (T) có đáy là hình tròn đường kính 6m (kể cả thành bể, biết rằng thành bể dày 30 cm) và chiều cao 1.5 m. Gọi V và V1 lần lượt là thể tích khối trụ (T) và thể tích nước có thể chứa được trong bể (bỏ qua thể tích các vòi phun). Tính tỉ số V1/V. + Câu lạc bộ Tiếng Anh của trường THPT Triệu Sơn 2 (tỉnh Thanh Hóa) có 68 thành viên, trong đó có 23 nam và 45 nữ. Trong buổi sinh hoạt hàng tháng cần chọn ra 2 thành viên gồm 1 nam và một nữ để dẫn chương trình, trong đó 1 bạn dẫn bằng Tiếng Anh và 1 bạn dẫn bằng Tiếng Việt. Hỏi có tất cả bao nhiêu sự lựa chọn? + Trong không gian tọa độ Oxyz, gọi (P) là mặt phẳng cắt các tia Ox, Oy, Oz lần lượt tại A(a;0;0), B(0;b;0), C(0;0;c) sao cho a2 + b2 + c2 = 12 và diện tích tam giác ABC lớn nhất. Mặt phẳng (P) đi qua điểm nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL lần 1 Toán 12 năm 2019 - 2020 trường Thạch Thành 2 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi KSCL lần 1 Toán 12 năm 2019 – 2020 trường THPT Thạch Thành 2 – Thanh Hóa, kỳ thi nhằm kiểm tra chất lượng môn Toán 12 theo định kỳ để giúp giáo viên bộ môn Toán nắm rõ được tiến độ học tập của học sinh khối 12. Trích dẫn đề thi KSCL lần 1 Toán 12 năm 2019 – 2020 trường Thạch Thành 2 – Thanh Hóa : + Khẳng định nào sau đây là sai? A. Khoảng cách giữa hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại. B. Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại. C. Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách từ một điểm bất kì nằm trên đường thẳng này đến đường thẳng kia. D. Khoảng cách giữa hai đường thẳng chéo nhau là khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. [ads] + Ông X dự định sử dụng hết 5 m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? + Cho tứ diện OABC có OA, OB , OC đôi một vuông góc với nhau và OA = OB = OC. Gọi M là trung điểm của BC (tham khảo hình vẽ bên). Góc giữa hai đường thẳng OM và AB bằng?
Đề khảo sát chất lượng Toán 12 lần 2 năm 2019 - 2020 trường Quế Võ 1 - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề khảo sát chất lượng Toán 12 lần 2 năm học 2019 – 2020 trường THPT Quế Võ 1 – Bắc Ninh, đề thi có mã đề 615 gồm 06 trang với 50 câu trắc nghiệm, học sinh làm bài trong khoảng thời gian 90 phút, kỳ thi nhằm giúp học sinh khối 12 rèn luyện thường xuyên để nâng cao kiến thức – kỹ năng giải Toán trắc nghiệm, hướng đến một kỳ thi THPT Quốc gia môn Toán năm 2020 thành công. Trích dẫn đề khảo sát chất lượng Toán 12 lần 2 năm 2019 – 2020 trường Quế Võ 1 – Bắc Ninh : + Bạn A trúng tuyển vào Trường Đại học Ngoại Thương nhưng vì không đủ tiền nộp học phí nên bạn A quyết định vay ngân hàng trong bốn năm, mỗi năm 4 triệu đồng để nộp học phí với lãi suất ưu đãi 3%/năm. Ngay sau khi tốt nghiệp Đại học, bạn A thực hiện trả góp hàng tháng cho ngân hàng số tiền (không đổi) với lãi suất theo cách tính mới là 0,25%/tháng trong vòng 5 năm. Tính số tiền hàng tháng bạn A phải trả cho ngân hàng (kết quả làm tròn tới hàng đơn vị). [ads] + Một hộp dựng bóng tennis có dạng hình trụ. Biết rằng hộp chứa vừa khít ba quả bóng tennis được xếp theo chiều dọc, các quả bóng tennis có kích thước như nhau. Thể tích phần không gian còn trống trong hộp chiếm tỉ lệ a% so với thể tích của hộp bóng tennis. Số a gần nhất với số nào sau đây? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SB, N là điểm thuộc cạnh SC sao cho SN = 2NC, P là điểm thuộc cạnh SD sao cho SP = 3DP. Mặt phẳng (MNP) cắt SA tại Q. Biết khối chóp S.MNPQ có thể tích bằng 1, khối đa diện ABCD.QMNP có thể tích bằng?
Đề khảo sát Toán 12 lần 1 năm 2019 - 2020 trường Thạch Thành 3 - Thanh Hóa
Ngày … tháng 11 năm 2019, trường THPT Thạch Thành 3 – Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất đối với học sinh khối 12 của nhà trường trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát Toán 12 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 3 – Thanh Hóa có mã đề 001, đề gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, học sinh có 90 phút để làm bài KSCL Toán 12. Trích dẫn đề khảo sát Toán 12 lần 1 năm 2019 – 2020 trường Thạch Thành 3 – Thanh Hóa : + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60°. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Gọi (H1) là phần đa diện chứa điểm S có thể tích V1, (H2) là phần đa diện còn lại có thể tích V2. Tính tỉ số thể tích V1/V2. + Một hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi kích thước như nhau, n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong ba viên bi lấy được có đủ 3 màu là 9/28. Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. [ads] + Cho phương trình: (cos4x – cos2x + 2(sinx)^2)/(cosx + sinx) = 0. Tính diện tích đa giác có các đỉnh là các điểm biểu diễn các nghiệm của phương trình trên đường tròn lượng giác. + Một công ty muốn làm một đường ống dẫn dầu từ kho A ở trên bờ biển đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Tính khoảng cách AD để số tiền chi phí thấp nhất, biết rằng giá để lắp đặt mỗi km đường ống trên bờ là 100 000 000 đồng và dưới nước là 260 000 000 đồng. + Người ta muốn xây một cái bể hình hộp đứng có thể tích V = 18 (m3), biết đáy bể là hình chữ nhật có chiều dài gấp 3 lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?