Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Thủy Nguyên - Hải Phòng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thủy Nguyên, thành phố Hải Phòng; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Thủy Nguyên – Hải Phòng : + Chị Hương thuê nhà với giá 2500 000 đồng một tháng và chị phải trả tiền dịch vụ giới thiệu là 1000 000 đồng (tiền dịch vụ chỉ trả một lần). Gọi x (tháng) là thời gian mà chị Hương thuê nhà, y (đồng) là tổng số tiền thuê nhà trong x (tháng) và tiền dịch vụ giới thiệu. a)Viết hệ thức liên hệ giữa y và x? b)Tính số tiền chị Hương phải trả khi thuê nhà 1 năm? + Hai đội công nhân cùng làm một công việc. Nếu hai đội làm chung thì hoàn thành công việc trong 8 ngày. Nếu làm riêng thì đội một hoàn thành nhanh hơn đội hai 12 ngày. Hỏi nếu làm riêng thì mỗi đội hoàn thành công việc trong bao nhiêu ngày? + Người ta xếp hai quả cầu có cùng bán kính r vào một chiếc hộp hình trụ (tham khảo hình vẽ dưới) sao cho các quả cầu đều tiếp xúc với hai đáy, đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả cầu đều tiếp xúc với đường sinh của hình trụ. Biết quả cầu có bán kính r = 10cm. Tính thể tích của chiếc hộp hình trụ?

Nguồn: toanmath.com

Đọc Sách

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Lâm Đồng
Nội dung Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Lâm Đồng Bản PDF - Nội dung bài viết Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GD&ĐT Lâm Đồng Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GD&ĐT Lâm Đồng Chào đón quý thầy cô và các em học sinh! Trong kỳ thi vào lớp 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 do sở GD&ĐT Lâm Đồng tổ chức, học sinh sẽ phải giải quyết những bài toán thú vị và thách thức. Dưới đây là một số câu hỏi đáng chú ý từ đề thi. 1. Một người dự định đi xe gắn máy từ A đến B với vận tốc không đổi. Tuy nhiên, vì có việc gấp, anh ta đã tăng vận tốc thêm 5 km/h và đến B sớm hơn 15 phút. Hãy tính vận tốc mà người đó dự định đi từ A đến B, biết quãng đường AB dài 70km. 2. Cho C là một điểm nằm trên nửa đường tròn tâm O đường kính AB (C khác A, C khác B). Hãy chứng minh rằng HE.HD = HC^2 trong tam giác HCE với H là hình chiếu vuông góc của C trên AB và E là giao điểm của HD và BI. 3. Hình nón có thể tích là 960 cm^3 và chiều cao là 8 cm. Hãy tính diện tích xung quanh của hình nón. Đây là chỉ một phần nhỏ trong đề thi vào lớp 10 chuyên môn Toán năm 2021 - 2022 sở GD&ĐT Lâm Đồng. Chúc các em học sinh ôn tập tốt và có kết quả tốt trong kỳ thi sắp tới!
Đề thi vào 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Hùng Vương Gia Lai
Nội dung Đề thi vào 10 môn Toán (chuyên) năm 2021 2022 trường chuyên Hùng Vương Gia Lai Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán (chuyên) năm 2021-2022 trường chuyên Hùng Vương Gia Lai Đề thi vào 10 môn Toán (chuyên) năm 2021-2022 trường chuyên Hùng Vương Gia Lai Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề thi vào 10 môn Toán (chuyên Toán) năm học 2021-2022 của trường THPT chuyên Hùng Vương - Gia Lai. Đề thi bao gồm các câu hỏi sau: Cho đa thức \( f(x) = ax^2 + bx + c \) (với \( a \neq 0 \)). Tìm a, b, c biết \( f(x) - 2020 \) chia hết cho \( x - 1 \), \( f(x) + 2021 \) chia hết cho \( x + 1 \), và \( f(x) \) nhận giá trị bằng 2 khi \( x = 0 \). Cho đường tròn (O) có đường kính AB cố định, I là một điểm thuộc đoạn OA (I khác O). Qua I, kẻ đường thẳng vuông góc với AB và cắt đường tròn (O) tại hai điểm phân biệt M và N. Gọi C là điểm thuộc cung lớn MN, E là giao điểm của AC với MN. a) Chứng minh tứ giác EIBC nội tiếp một đường tròn. b) Chứng minh \( AE \cdot AC = AM^2 \) và \( AE \cdot AC - AI \cdot IB = AI^2 \). c) Gọi H, K, P lần lượt là hình chiếu của C lên đường thẳng BM, MN và BN. Xác định vị trí điểm C trên đường tròn (O) sao cho độ dài đoạn thẳng HK lớn nhất. Cho hai số thực x, y không âm thỏa mãn x + y = 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \( S = (5x^2 + 7y)(5y^2 + 7x) + 151xy \).
Đề thi vào 10 môn Toán cơ sở năm 2021 2022 sở GD ĐT Đồng Tháp
Nội dung Đề thi vào 10 môn Toán cơ sở năm 2021 2022 sở GD ĐT Đồng Tháp Bản PDF - Nội dung bài viết Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GD&ĐT Đồng Tháp Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GD&ĐT Đồng Tháp Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi vào lớp 10 môn Toán cơ sở năm học 2021 - 2022 của sở GD&ĐT Đồng Tháp, với các câu hỏi sau: 1. Trong xưởng may, một tổ cần may 8400 chiếc khẩu trang trong một thời gian nhất định. Để tăng năng suất, tổ đã sản xuất nhiều hơn 102 chiếc khẩu trang mỗi ngày so với kế hoạch. Trước thời gian quy định 4 ngày, tổ đã may được 6416 chiếc khẩu trang. Hỏi số khẩu trang mà tổ cần phải may mỗi ngày theo kế hoạch là bao nhiêu? 2. Cho tam giác ABC vuông tại A, có đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài BC và độ dài đường cao AH. 3. Cho đường tròn (O) và một điểm M ở ngoài đường tròn đó. Kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là hai tiếp điểm). a) Chứng minh tứ giác MACB là tứ giác nội tiếp. b) Vẽ đường kính BK của đường tròn (O), H là điểm trên BK sao cho AH vuông góc BK. Điểm I là giao điểm của AH, MK. Chứng minh rằng I là trung điểm của HA. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2021, chúc quý thầy cô và các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nam Định
Nội dung Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nam Định Bản PDF Sytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Nam Định. Đề thi này bao gồm đáp án và lời giải chi tiết cho từng câu hỏi.Đề thi tuyển sinh lớp 10 môn Toán năm 2021-2022 của sở GD&ĐT Nam Định có các nội dung sau:1. Mảnh đất hình chữ nhật ABCD có chiều dài AB là 6m, chiều rộng BC là 4m. Người ta trồng hoa trên phần đất là nửa hình tròn có đường kính AD và nửa đường tròn có đường kính BC, phần còn lại để trồng cỏ. Yêu cầu tính diện tích phần đất trồng cỏ (phần được tô đậm trong hình vẽ, làm tròn đến chữ số thập phân thứ nhất).2. Cho O và điểm A nằm bên ngoài đường tròn. Từ A, kẻ các tiếp tuyến AB và AC với đường tròn O (B, C là các tiếp điểm). Kẻ đường kính BD của đường tròn O. a) Chứng minh ABOC là tứ giác nội tiếp đường tròn và BDC AOC. b) Kẻ CK vuông góc với BD tại K. Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK.3. Tìm tọa độ của tất cả các điểm thuộc parabol y = x^2 có tung độ bằng -8.Đề thi được lưu trữ trong file Word để quý thầy cô thuận tiện trong việc tham khảo và sử dụng. Hy vọng rằng đề thi sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!